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Abstract. This article presents a multiobjective approach for
scheduling large workflows in distributed datacenters. We consider a
realistic scheduling scenario of distributed cluster systems composed of
multi-core computers, and a multi-objective formulation of the schedul-
ing problem to minimize makespan, energy consumption and deadline
violations. The studied schedulers follow a two-level schema: in the
higher-level, we apply a multiobjective heuristic and a multiobjective
metaheuristic, to distribute jobs between clusters; in the lower-level, spe-
cific backfilling-oriented scheduling methods are used for task scheduling
locally within each cluster, considering precedence constraints. A new
model for energy consumption in multi-core computers is applied. The
experimental evaluation performed on a benchmark set of large work-
loads that model different realistic high performance computing applica-
tions demonstrates that the proposed multiobjective schedulers are able
to improve both the makespan and energy consumption of the sched-
ules when compared with a standard Optimistic Load Balancing Round
Robin approach.

1 Introduction

Datacenters are large supercomputing facilities hosting computing resources that
provide multiple services, including computing power, networking, storage, etc.
in different application domains, including science, industry and commerce [29].

New paradigms for computation that propose using geographically distrib-
uted infrastructures to deal with complex problems (i.e. grid and cloud comput-
ing) have gained notorious interest due to the emergence of modern datacenter
facilities and parallel computing methodologies and libraries. Indeed, a federa-
tion of distributed datacenters provides a significantly large amount of computing
power to be used in modern supercomputing applications. Each datacenter in a
federation is typically composed by a large number of computational resources,
including high performance clusters, large storage systems, and/or components
of large grids or cloud systems [30].

Energy efficiency has become a major issue when using large computing
infrastructures. The energy consumption of datacenters should be kept as low
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as possible, for both economic and environmental reasons. However, energy effi-
ciency is in conflict with the performance of the system, since increasing the
performance requires using more energy, and reducing the energy consumption
will negatively affect the Quality of Service (QoS) that the computing system
provides to the users. Thus, a multi-objective analysis is needed for finding accu-
rate solutions of the datacenter planning problem, providing different trade-offs
between energy consumption and performance.

Different techniques for reducing the energy consumption in datacenters have
been proposed, ranging from ad-hoc hardware solutions to more general software
methods adapted for specific infrastructures [1,24,25,28].

This article presents a hierarchical multi-objective approach for energy-aware
scheduling of large workloads into a federation of distributed datacenters, com-
posed by a number of clusters that might be geographically distributed, which
is indeed the architecture of modern high performance and distributed comput-
ing systems, including big supercomputers, high performance computing centers,
and cloud infrastructures, among others. We extend the greedy list scheduling
heuristic approach for multi-core heterogeneous computing systems presented in
our previous works [6,17] to consider: (i) a hierarchical model that uses two lev-
els for assigning jobs to resources; (ii) the scheduling of large workflows having
tasks with dependencies; and (iii) the utilization of a mutiobjective evolutionary
algorithm to decide the best assigning of jobs to distributed cluster nodes.

The hierarchical two-level approach [7,20,21] divides the scheduling problem
into a number of simpler and smaller sub-problems to be solved in each compo-
nent of the datacenter infrastructure, and a specific ad-hoc backfilling heuristic
based on combining the makespan, the energy consumption, and the QoS of
solutions is presented for scheduling within each cluster. In this work, we mea-
sure the QoS of each schedule using a simple metric that accounts for the jobs
whose deadlines are not met.

The experimental evaluation of the studied schedulers is performed over a
benchmark set of 75 workloads with large jobs that model typical high perfor-
mance computing applications over realistic distributed infrastructures. Three
classes of workloads are considered: Series-Parallel, Heterogeneous-Parallel, and
Mixed. Each problem instance contains 1000 jobs, with up to 132 tasks each,
to be scheduled in a federation of datacenters with up to 1500 computational
resources. The experimental results demonstrates that accurate solutions are
computed by the best performing schedulers, allowing the planner to achieve
improvements of up to 17.9% in makespan, 20.7% in energy consumption,
and 36.4% in deadline violation penalization over a traditional optimistic load
balancing round-robin strategy.

The article is organized as follows. The problem formulation and review of the
related work are presented in Sect. 2. The scheduling approach and the proposed
methods ares described in Sect. 3. The experimental evaluation is reported in
Sect. 4, including a comparison against a traditional optimistic load balancing
round robin approach. Finally, Sect. 5 formulates conclusions and main lines for
future work.
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2 Energy-Aware Scheduling in a Federation
of Datacenters

This section introduces the problem model and discusses the related work about
energy-aware scheduling in datacenters.

2.1 Problem Model and Formulation

The energy-aware scheduling problem addressed in this article considers the
following elements:

– A distributed infrastructure (datacenter federation) formed by k heteroge-
neous Cluster Nodes (the datacenters) CN = {CN0, CN1, . . . , CNk}. Each
CN is a collection of NPr multi-core processors, which is characterized by five
values (NPr, opsr, cr, E

r
IDLE , Er

MAX), defining the number of processors, their
performance (in FLOPS) and number of cores, and the energy consumption
of each processor at idle and peak usage, respectively.

– A set of n independent heterogeneous jobs J = {j0, j1, . . . , jn}. Each job jq

has an associated deadline Dq. Each job jq is a parallel application that is
decomposed into a (large) set of tasks Tq = {tq0, tq1, . . . tqm} with dependen-
cies among them. Typically, each task has different computing requirements.

– Each task tqα is characterized by two values (oqα, ncqα) defining its length
(number of operations), and the number of resources (cores) required for the
parallel execution, respectively.

Each job is represented as a Directed Acyclic Graph (DAG), i.e. a precedence
task graph jq = (V,E), where the set of nodes V contains each task tqα (0 ≤
α ≤ m) of the parallel program jq. The set of (directed) edges E represents the
dependencies between tasks, a partial order tqα ≺ tqβ that models the precedence
constraints: an edge eαβ ∈ E means that task tqβ cannot start before task tqα

is completed. We consider negligible communication costs, as they only occurs
between servers within the same CN.

We are dealing with large workloads, so the problem instances are composed
of thousands of jobs (this means hundreds of thousands of tasks) to be scheduled
onto a number of CN (hundreds to thousands computing resources).

The described scheduling scenario is modeled with the multi-objective prob-
lem min (fM , fE), that proposes the simultaneous optimization of the makespan
fM and the energy consumption fE .

The makespan evaluates the total time to execute a set of jobs, according
to the expression in Eq. 1, where x represents an allocation, k is the number of
available cluster nodes, and CTr is the completion time of cluster node r (CNr).
The energy consumption function for a set of jobs executed in certain cluster
nodes is defined in Eq. 2, using the energy model for multi-core architectures by
Nesmachnow et al. [17], where f1 is the higher-level scheduling function, and f2

is the lower-level scheduling function. Both the energy required to execute the
tasks assigned to each computing resource within a CN, and the energy that each
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resource consumes in idle state are taken into account. The deadline violation
penalization is defined in Eq. 3. A penalty function Penaltyq(Fq) is associated
with every application jq, where Fq is the additional amount of time required
to finish the execution of jq after its deadline Dq is met. If jq is finished before
its deadline, then Fq is 0. Three different penalization functions are used in this
work, a simple identity function (Penaltyq(Fq) = Fq), a square root function
(Penaltyq(Fq) =

√
Fq), and a square function (Penaltyq(Fq) = F 2

q ).

fM (x) = max
0≤r≤k

CTr (1)

fE(x) =
∑

r∈CN

∑

jq∈J:
f1(jq)=CNr

∑

tqi∈Tq :
f2(tqi)=pj

EC(tqi, pj)

+
∑

pj∈CN

ECIDLE(pj)
(2)

fP (x) =
∑

jq∈J

Penaltyq(Fq) (3)

In this article, we study the optimization problem from the point of view
of the computing system (i.e. the infrastructure administration), thus we use
two system-related objectives. Additionally, we consider a QoS-related objective
such as the number of job deadlines violated, taking into account the point of
view of the customer/user in the problem formulation.

2.2 Related Work

Many works in the literature have dealt with energy-aware scheduling in com-
puting systems. Two main optimization approaches are established: indepen-
dent and simultaneous. In the independent approach, energy and performance
are assumed independent, so scheduling algorithms that optimize classic perfor-
mance metrics are combined with a slack reclamation technique, such as dynamic
voltage scaling (DVS)/dynamic voltage and frequency scaling (DVFS) [3,22]. In
the simultaneous approach, performance and energy are simultaneously opti-
mized, and the problem is modeled as a multi-constrained, bi-objective opti-
mization one. The algorithms are oriented to find Pareto optimal schedules;
where no scheduling decision can strictly dominate the other ones with better
performance and lower energy consumption at the same time.

In this article, we follow the simultaneous approach. Below we briefly review
the main related works about simultaneous optimization of energy and perfor-
mance metrics.

Khan and Ahmad [9] applied the concept of Nash Bargaining Solution
from game theory for scheduling independent jobs, simultaneously minimizing
makespan and energy on a DVS-enabled grid system. Lee and Zomaya [11] stud-
ied several DVS-based heuristics to minimize the weighted sum of makespan
and energy. A makespan conservative local search technique is used to slightly
modify scheduling decisions when they do not increase energy consumption for
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executing jobs, in order to escape from local optima. Later, Mezmaz et al. [15]
improved the previous work by proposing a parallel bi-objective hybrid genetic
algorithm (GA) for the same problem, using the cooperative island/multi-start
farmer-worker model, significantly reducing the execution time of the scheduling
method. Pecero et al. [18] proposed a two-phase bi-objective algorithm based
on the Greedy Randomized Adaptive Search Procedure (GRASP) that applies
a DVS-aware bi-objective local search to generate a set of Pareto solutions.

Kim et al. [10] studied the priority/deadline constrained scheduling prob-
lem in ad-hoc grids with limited-charge DVS-enabled batteries, and proposed
a resource manager to exploit the heterogeneity of tasks while managing the
energy. Luo et al. [14] showed that batch mode dynamic scheduling outperforms
online approaches, though it requires significantly more computation time too.

Li et al. [12] introduced a MinMin-based online dynamic power manage-
ment strategy with multiple power-saving states to reduce energy consumption
of scheduling algorithms. Pinel et al. [19] proposed a double minimization app-
roach for scheduling independent tasks on grids with energy considerations, first
applying a MinMin approach to optimize the makespan, and then a local search
to minimize energy consumption. Lindberg et al. [13] proposed six greedy algo-
rithms and two GAs for solving the makespan-energy scheduling problem subject
to deadline and memory requirements.

In our previous work [17], we introduced an energy consumption model for
multi-core computing systems. Our approach did not use DVS nor other specific
techniques for power/energy management. Instead, we proposed an energy con-
sumption model based on the energy required to execute tasks at full capacity,
the energy when not all the available cores of the machine are used, and the
energy that each machine on the system consumes in idle state. We proposed
twenty fast list scheduling methods adapted to solve a bi-objective problem, by
simultaneously optimizing both makespan and energy consumption when exe-
cuting tasks on a single cluster node. Using the same approach, Iturriaga et al. [8]
showed that a parallel multi-objective local search based on Pareto dominance
outperforms deterministic heuristics based on the traditional Min-Min strategy.

In [8,17], we tackled the problem of scheduling independent Bag-of-Tasks
(BoT) applications. In this article, we extend the previous approach to solve a
more complex multi-objective optimization problem, by considering large jobs,
whose tasks have precedences, modeled by DAGs. In addition, here we propose
a fully hierarchical scheduler that operates in two levels for efficiently planning
large jobs in distributed datacenters.

3 The Proposed Hierarchical Energy-Aware Schedulers
for Federations of Datacenters

We propose a hierarchical two-level scheduling approach, which fits properly to
our problem model and the considered nowadays distributed infrastructures.

The higher-level scheduler (executing in a service front-end) applies a clus-
ter assignment optimization, adapting a combined heuristic from our previous
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work [17], in order to distribute jobs to cluster nodes. Within each cluster node,
the lower-level scheduler applies a local scheduler specifically conceived for multi-
core architectures and managing idle times (we called them holes) due to core
availability. Both methods are described in the next section.

3.1 Lower-Level Scheduler

The proposed low-level scheduling heuristics are based on the Heterogeneous
Earliest Finish Time (HEFT) strategy [27]. HEFT is a successful scheduler for
DAG-modeled applications that works by assigning priorities to tasks, taking
into account the upward rank metric, which evaluates the expected distance of
each task to the last node in the DAG (the end of computation). The upward
rank is recursively defined by URi = ti + maxj∈succ(i) cij + URj , where ti is the
execution time of task i in the computing resources, succ is the list of successors
of task i, and cij is the communication cost between tasks i and j. After sorting
all tasks of the job by taking into account the upward rank metric, HEFT assigns
the task with the highest upward rank to the computing element that computes
it at the earliest time.

The proposed heuristic for low-level scheduling in datacenters is Earliest
Finish Time Hole (EFTH). It follows the schema of HEFT, using a backfill-
ing technique and adapting the algorithm to work with multi-core computing
resources, by taking into account the “holes” that appear when a specific com-
puting resources is not fully used by a single task.

EFTH sorts the tasks according to the upward rank values, then gives priority
to assign the tasks to existing holes rather than using empty machines in the CN.
When a given task fits on more than one hole, the heuristic selects the hole that
can complete the task in the earliest time, disregarding the hole length or other
considerations. As a consequence, this variant targets the reduction of deadline
violations and the improvement of the QoS for the users of the datacenter. When
no holes are available to execute the task, the heuristic chooses the machine with
the minimum finish time for that task.

The rationale behind this strategy is to use available holes and left unoccu-
pied large holes and empty machines for upcoming tasks. Ties between holes as
well as between machines are decided lexicographically, as the method searches
sequentially (in order) both holes and machines.

3.2 Higher-Level Scheduler

The higher-level scheduler assigns jobs to cluster nodes. In this work, we
study two algorithms: a specific version of the two-phase combined heuristic
MaxMIN [17] and a multiobjective evolutionary algorithm, NSGA-II.

MaxMIN. The class of combined heuristics is a set of specific greedy list
scheduling methods, which combine the makespan and energy consumption opti-
mization criteria for scheduling in multi-core computers. Originally proposed to
schedule independent tasks following the Bag-of-Task model [17,26], in this work
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we extend the greedy approach in order to schedule large workflows having tasks
with dependencies. MaxMIN operates in two phases. First, it builds a set of pairs
(job, cluster node), by associating every job to the cluster node that can complete
it with less energy use, taking into account all previous assignments already per-
formed for each CN. After that, among all these pairs, it chooses the one with the
maximum completion time among feasible assignments (i.e., the servers of the
cluster node have enough cores to execute the job). Therefore, larger tasks are
allocated first in the most suitable cluster nodes and shorter tasks are mapped
afterward, trying to balance the load of all cluster nodes and making use of avail-
able results. When deciding where to assign a given job, MaxMIN first checks
which CNs are able to execute the job, meaning that their servers have enough
number of cores to execute any task in the job. In order to guide the search
of the MaxMIN scheduler, we use heuristic functions to estimate the execution
time and the energy required to execute each jobs. We approximate the com-
pletion time of a job in the assigned CN as the sum of the expected time to
compute all tasks in the job, if they were executed sequentially, divided by the
total number of cores available in the CN. To estimate the energy consumption
when executing the job jq in CNr, we multiply the execution time estimation by
the number of processors in CNr and the energy consumption of such processors
at peak power, and add it to the time the CNr remains idle after finishing its
assigned jobs until the last CN executes all jobs (i.e., the makespan value).

NSGA-II. Evolutionary algorithms (EAs) are non-deterministic methods that
emulate the evolution of species in nature to solve optimization, search, and
learning problems [2]. In the last thirty years, EAs have been successfully applied
for solving many high-complexity optimization problems. Multiobjective evolu-
tionary algorithms (MOEAs) [4,5] have been applied to solve hard optimization
problems, obtaining accurate results when solving real-life problems in many
research areas. Unlike many traditional methods for multiobjective optimization,
MOEAs are able to find a set with several solutions in a single execution, since
they work with a population of tentative solutions in each generation. MOEAs
must be designed taking into account two goals at the same time: (i) approx-
imating the Pareto front, usually applying a Pareto-based evolutionary search
and (ii) maintaining diversity instead of converging to a reduced section of the
Pareto front, usually accomplished by using specific techniques also used in mul-
timodal function optimization (sharing, crowding, etc.).

In this work, we apply the Non-dominated Sorting Genetic Algorithm, version
II (NSGA-II) [5], a popular state-of-the-art MOEA that has been successfully
applied in many application areas. NSGA-II includes features to deal with three
criticized issues on its predecessor NSGA, to improve the evolutionary search:
(i) an improved non-dominated elitist ordering that diminishes the complexity
of the dominance check; (ii) a crowding technique for diversity preservation; and
(iii) a new fitness assignment method that considers the crowding distance values.
Next we present the main characteristics of the proposed NSGA-II algorithm.

Solution Encoding. Each solution is encoded as a set of lists of integers. Each
list represents the job execution queue for each data center and contains the
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identifiers of its assigned jobs. The execution order of the jobs in each data
center is given by the order of the job identifiers in each list.

Fitness Function. The fitness function is computed using the EFTH algorithm.
Given a higher-level schedule, EFTH computes the lower-level scheduling and
calculates the makespan, energy consumption, and violation penalization met-
rics.

Population Initialization. The initial population is created randomly using an
uniform distribution function.

Selection Operator. Selection is performed using the binary tournament method.
This method randomly selects two solutions from the population. If one of the
selected solutions is dominated, then it is discarded and the non-dominated
solution is selected. If both solutions are non-dominated, then the solution which
is in the most crowded region is discarded and the remaining solution is selected.

Crossover Operator. The well-known Partially Matched Crossover (PMX)
method is used as the crossover operator. To apply this method, a single job list
is constructed for each parent by concatenating the job list of every data cen-
tres. Two jobs are randomly selected from this list as cutting points. All jobs in
between these two points are swapped. The remaining jobs are rearranged using
position wise exchanges, maintaining its original ordering information. Finally,
the resulting list is disaggregated to reconstruct a job list for each data centre.

Mutation Operator. A simple exchange method is used as the mutation operator.
This method works by randomly selecting a job and swapping it with another
randomly selected job from any job list.

Repair Operator. This special operator repairs an infeasible solution turning it
into a feasible solution. It is applied right after the Crossover and Mutation
operators in order to repair any infeasibility introduced by these operators.

3.3 Baseline Scheduler for the Comparison

In order to compare results computed by the proposed schedulers, we consider a
typical scenario as a baseline reference, applying a load balancing method and a
backfilling technique such as the ones traditionally used in current cluster, grid,
and cloud management systems.

Both methods are described next:

– In the higher-level, Optimistic Load Balancing Round Robin (OLB-RR) [6]
assigns every job to a cluster node trying to balance the load between them.
If the job can not be executed in the selected cluster node (because some
task in it requires more cores than the number of cores of the servers in the
cluster node), then the heuristic continues the iteration to the next ones until
a suitable cluster node is found.
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– In the lower-level, NOUR Best Fit Hole (NOUR) [6] applies a “best fit hole”
strategy, i.e. selecting the hole with the closest length to the execution time of
the task, but without taking into account the task sorting using the upward
rank metric. Instead, the heuristic simply sorts the list of tasks lexicograph-
ically (from task #0 to task #N), but it obviously takes into account the
precedence graph. This heuristic is intended to produce simple and compact
schedules by not sticking to the importance given by the upward rank metric.

4 Experimental Analysis

This section reports the experimental analysis of the proposed hierarchical
scheduling methods.

4.1 Problem Instances

A benchmark set of 75 different workflows batches was generated for the experi-
mental evaluation of the proposed energy-aware hierarchical scheduler. The num-
ber of tasks in workflows ranges from 3 to 132. Workflows were generated using
the SchMng application [23].

We use three different workflow models to consider different problem scenar-
ios: (1) Series-Parallel (2) Heterogeneous-Parallel, and (3) Mixed. The Series-
Parallel model represents jobs that can be split into concurrent threads/processes
running in parallel. Heterogeneous-Parallel represent a generic job composed of
non-identical computational tasks with arbitrary precedences. The Mixed work-
flow category combines Series-Parallel, Heterogeneous-Parallel and single-task
jobs. Figure 1 shows the overall shape of the different workflow types, aimed to
reflect real high performance computing applications. Each block represents a
computational task, the execution time of a task is represented by the height
of the block, and the number of cores is represented by the width of the block.
Dependencies are represented by the edges in the graph.

In the benchmark set of 75 batch of workflows, 25 correspond to 1000
Series-Parallel workflows (25000 workflows altogether), 25 are composed of 1000
Heterogeneous-Parallel workflows (25000 workflows altogether), and the remain-
ing 25 are Mixed, including a combination of different workflow types (300
Heterogeneous-Parallel workflows, 300 Series-Parallel workflows, and 400 Single-
Task applications). A total number of 75000 workflows are studied in the experi-
mental analysis. The benchmark set of workflows is publicly available at https://
www.fing.edu.uy/inco/grupos/cecal/hpc/EAWSDD-2015.tar.gz.

Regarding the computational infrastructure, we consider scenarios with five
cluster nodes, with up to 100 processors each. We take into account combinations
of nowadays Intel processor with one to six cores, listed in Table 1.

4.2 Development and Execution Platform

Both proposed schedulers (higher- and lower-level) were implemented in the C
programming language, using the stdlib library and the GNU gcc compiler.
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(a) Series-Parallel (b) Heterogeneous-Parallel (c) Single-Task

Fig. 1. Workflow types used in the experimental evaluation of the proposed energy-
aware hierarchical scheduler

Table 1. Characteristics of the processors considered for the CN infrastructures

Processor Frequency Cores GFLOPS EIDLE EMAX GFLOPS/
core

Intel Celeron 430 1.80GHz 1 7.20 75.0W 94.0W 7.20

Intel Pentium E5300 2.60GHz 2 20.80 68.0W 109.0W 10.40

Intel Core i7 870 2.93GHz 4 46.88 76.0W 214.0W 11.72

Intel Core i5 661 3.33GHz 2 26.64 74.0W 131.0W 13.32

Intel Core i7 980 XE 3.33GHz 6 107.60 102.0W 210.0W 17.93

The experimental evaluation was performed on a Dell Power Edge server,
Quad-core Xeon E5430 processor at 2.66 GHz, 8 GB RAM and Gigabit Ethernet,
from the Cluster FING high performance computing facility (Universidad de la
República, Uruguay, website http://www.fing.edu.uy/cluster) [16].

4.3 NGSA-II Parameter Configuration

We configured a number of 100 solutions for the NSGA-II population. The
crossover operator is applied with a probability pc = 1.0 and the mutation
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operator with a probability of pm = 0.2. Finally, for the stopping condition, we
considered a fixed number of 20000 fitness function evaluations, which provides
an adequate convergence behaviour for the population of solutions.

4.4 Results and Discussion

Table 2 reports the best, average, and standard deviation values for the makespan
and energy consumption objectives, obtained in 25 executions of the proposed
scheduler for different batches of each workflow type. We compare the MaxMIN-
EFTH results with those computed by two schedulers combinations: MaxMIN-
NOUR and RR-NOUR. This way, we study the capability of the proposed
scheduler to improve the results in both (higher and lower) scheduling levels.

Table 2. Makespan and energy comparison for the studied schedulers

MaxMIN-NOUR MaxMIN-EFTH RR-NOUR

Series-Parallel workflows

metric fM fE fP fM fE fP fM fE fP

avg. 8782.7 70998.9 1.11×108 7658.0 62003.4 8.73×107 8847.6 71351.8 6.56×107

σ 237.4 1881.0 0.97×107 203.6 1603.4 0.72×107 230.8 1833.4 0.71×107

best 8457.3 68393.3 9.29×107 7352.8 59680.2 7.38×107 8452.7 68291.2 5.19×107

Heterogeneous-Parallel workflows

metric fM fE fP fM fE fP fM fE fP

avg. 5060.9 50305.1 3.45×107 4616.7 45940.3 2.91×107 5130.1 50774.8 2.21×107

σ 148.0 1412.2 0.41×107 124.2 1176.3 0.34×107 152.9 1519.7 0.25×107

best 4842.4 48300.2 2.54×107 4407.6 43966.7 2.20×107 4881.5 48296.4 1.63×107

Mixed workflows

metric fM fE fP fM fE fP fM fE fP

avg. 3112.6 28722.0 9.71×106 2961.6 28535.7 8.68×106 3607.0 32855.9 6.05×106

σ 747.6 5160.5 5.73×106 601.8 3804.6 4.52×106 641.1 4240.1 3.50×106

best 2381.3 22998.0 5.35×106 2288.0 23458.6 4.89×106 2677.0 25633.9 3.09×106

The Kruskal-Wallis statistical test was applied to study the statistical confi-
dence of the results, by analyzing the distributions of the results computed by
each scheduler for each problem instance class. The best results for each metric
and problem instance are marked in bold (gray background) in Tables 2 and 3
when the p-value computed in the correspondent pair-wise Kruskal-Wallis test
is below 10−2 (meaning a statistical confidence of the results greater than 99 %).

The results in Table 2 demonstrate that the proposed MaxMIN-EFTH sched-
uler computes the best makespan and energy results for all problem classes.
Overall, MaxMIN-EFTH computes the best makespan values in all 75 schedul-
ing scenarios, and the best energy values in 58 out of 75. Although its accuracy
regarding the makespan and energy objectives, the penalization is neglected by
MaxMIN-EFTH. This is shown in Table 2 where the RR-NOUR baseline sched-
ulers are able to compute the best penalization values for all the problem classes.
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Fig. 2. Example Pareto fronts computed by NSGA-II-EFTH when solving a Series-
Parallel, a Heterogeneous-Parallel, and a Mixed problem instance.

Next we evaluated the NSGA-II-EFTH algorithm considering a total of 30
independent executions for each problem instance. Figure 2 presents the Pareto
front computed by a single NSGA-II-EFTH execution when solving a problem
instance of each workload class.

To compare the schedules computed by NSGA-II-EFTH and RR-NOUR, we
chose from each Pareto front computed by NSGA-II-EFTH the compromise solu-
tion, i.e. the closest to the one computed by RR-NOUR for each instance using a
normalized Euclidean distance Table 3 presents the average improvements of the
solutions computed by MaxMIN-NOUR, MaxMIN-EFTH, and the compromise
solution computed by NSGA-II-EFTH, over the reference baseline schedulers for
each workload class and objective function.

Table 3. Average makespan, energy consumption, and penalization improvements over
RR-NOUR

workflow type
MaxMIN-EFTH NSGA-II-EFTH
fM fE fP fM fE fP

Series-Parallel 13.4% 13.1% -33.0% 13.8% 13.7% 36.4%
Heterogeneous-Parallel 10.0% 9.5% -31.4% 10.5% 11.8% 34.2%
Mixed 17.9% 13.1% -43.5% 17.2% 20.7% 19.3%

The results demonstrate that MaxMIN-EFTH computes better schedules
than RR-NOUR in terms of makespan and energy consumption, but RR-
NOUR computes better penalization improvements than MaxMIN-EFTH. This
is because MaxMIN considers makespan and energy consumption but not task’s
deadlines, while RR does not consider any objective but favors meeting deadlines
by evenly distributing tasks among datacenters. NSGA-II-EFTH is able to com-
pute more accurate schedules than MaxMin-EFTH for nearly all objetives and all
problem instances, improving RR-NOUR schedules on all objetives. MaxMIN-
EFTH computes competitive solutions when considering the makespan objective,
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Fig. 3. Example solutions computed when solving a Series-Parallel, a Heterogeneous-
Parallel, and a Mixed problem instance.

but it is outperformed by NSGA-II-EFTH in the remaining objectives. NSGA-II-
EFTH computes up to a 7.6 % improvement in energy consumption, and up to
69.4 % improvement in the penalization function over MaxMIN-EFTH. On the
other hand, the execution time of NSGA-II-EFTH ranges from 12 h when solv-
ing problem instances of the Heterogeneous-Parallel and Mixed workload classes,
up to 45 h when solving problem instances of the Series-Parallel workload class.
These execution time requirements turn NSGA-II-EFTH unsuitable for tackling
online scheduling problems.

Figure 3 graphically shows the solutions computed by RR-NOUR, MaxMIN-
NOUR, MaxMin-EFTH, and a single NSGA-II-EFTH execution when solving a
problem instance of each workload class.

5 Conclusions and Future Work

We introduced a multiobjective formulation of a two-level scheduling problem in
datacenters using multi-core computers and considering makespan, energy con-
sumption, and deadline violation penalization. The EFTH backfilling-oriented
scheduler is used as a lower-level algorithm to schedule tasks locally within
each cluster, while the MaxMIN heuristic and NSGA-II metaheuristic are both
adapted to work with distributed datacenters and used as higher-level schedulers.

The experimental evaluation of the MaxMIN-EFTH and NSGA-II-EFTH
schedulers compares the makespan, energy, and deadline violation penalization
results against those computed by a traditional RR, and the MaxMIN heuristic
both combined with a simple backfilling technique. The evaluation is performed
over a set of 75 instances consisting of 1000 jobs each considering a total of
30 independent executions. From the experimental results, we conclude that
MaxMIN-EFTH is able to obtain significant improvements in makespan and
energy consumption objectives over the references baseline schedulers, but sac-
rificing accuracy in the deadline violation penalization objective. On the other
hand, NSGA-II-EFTH obtains improvements in all three objectives while sacri-
ficing efficiency by requiring execution times not suitable for online scheduling.

MaxMIN-EFTH is a promising shceduler for modern distributed datacen-
ter infrastructures. Nevertheless, the results computed by NSGA-II-EFTH show
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that the solutions computed by MaxMIN-EFTH could be greatly improved spe-
cially for the deadline violation penalization objective.

The main lines for future work are focused on improving the scheduling
approach by studying different combinations of higher-level heuristics and lower-
level backfilling schedulers.
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T., Ramı́rez-Alcaraz, J.: Multiple workflow scheduling strategies with user run time
estimates on a grid. J. Grid Comput. 10(2), 325–346 (2012)

8. Iturriaga, S., Nesmachnow, S., Dorronsoro, B., Bouvry, P.: Energy efficient schedul-
ing in heterogeneous systems with a parallel multiobjective local search. Comput.
Inf. J. 32(2), 273–294 (2013)

9. Khan, S., Ahmad, I.: A cooperative game theoretical technique for joint optimiza-
tion of energy consumption and response time in computational grids. IEEE Trans.
Parallel Distrib. Syst. 20, 346–360 (2009)

10. Kim, J.K., Siegel, H., Maciejewski, A., Eigenmann, R.: Dynamic resource man-
agement in energy constrained heterogeneous computing systems using voltage
scaling. IEEE Trans. Parallel Distrib. Syst. 19, 1445–1457 (2008)

11. Lee, Y., Zomaya, A.: Energy conscious scheduling for distributed computing sys-
tems under different operating conditions. IEEE Trans. Parallel Distrib. Syst. 22,
1374–1381 (2011)

12. Li, Y., Liu, Y., Qian, D.: A heuristic energy-aware scheduling algorithm for hetero-
geneous clusters. In: Proceedings of the 15th International Conference on Parallel
and Distributed System, pp. 407–413 (2009)

13. Lindberg, P., Leingang, J., Lysaker, D., Khan, S., Li, J.: Comparison and analy-
sis of eight scheduling heuristics for the optimization of energy consumption and
makespan in large-scale distributed systems. J. Supercomputing 59(1), 323–360
(2012)
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