
Discrete Optimization

Algorithms for dynamic scheduling of unit execution time tasks

Antonio Rodr�ııguez D�ııaz a, Andrei Tchernykh b, Klaus H. Ecker c,*

a University of Baja California, Tijuana, Mexico
b CICESE Research Center, Ensenada, Mexico

c Institut f €uur Informatik, Technische Universit€aat Clausthal, Julius Albert Str. 4, Clausthal-Zellerfeld D-38678, Germany

Received 11 September 2000; accepted 24 October 2001

Abstract

We analyze performance properties of list scheduling algorithms under various dynamic assumptions and different

levels of knowledge available for scheduling, considering the case of unit execution time tasks. We focus on bounds for

the ISF (immediate successors first) and MISF (maximum number of immediate successors first) scheduling strategies

and show the difference from other bounds obtained for the same problem. Finally, we present case studies and ex-

perimental results to assess the average behavior.

� 2003 Elsevier Science B.V. All rights reserved.

Keywords: Scheduling; List scheduling; Worst case analysis; On-line scheduling; UET

1. Introduction

A scheduling problem is called static if all in-

formation required to develop a feasible (optimal
or non-optimal) schedule is available before the

first task is actually processed. This means that the

number of tasks, their processing times, and pre-

cedence constraints are known in advance. When

dealing with such problems, we may proceed in

two steps: first create a schedule for all tasks, and

then execute them according to the schedule. This

first phase is also often referred to as off-line

scheduling. In contrast to this, a scheduling pro-

cess is called on-line if the schedule is constructed

on the fly together with the execution of tasks.

This is typically the case if the total set of tasks or
task parameters is not known in advance, but

knowledge about new tasks becomes available

during or after the execution of already known

tasks. Scheduling is then only possible for the tasks

we have already knowledge of, i.e. it can only be

done on the basis of a limited planning horizon; if

new tasks arrive, the current schedule has to be

updated appropriately. In some cases a static as-
pect would appear, for example, if upon arrival of

a new task its exact processing time and de-

pendencies to other already present tasks are

available. In the case that only probabilistic in-

formation (for example about the processing time)

is available, we talk about a stochastic scheduling

problem; this case is not considered here.

* Corresponding author. Tel.: +49-5323-723553; fax: +49-

5323-723573.

E-mail addresses: antonio@faro.ens.uabc.mx (A. Rodr�ııguez

D�ııaz), chernykh@cicese.mx (A. Tchernykh), ecker@informa-

tik.tu-clausthal.de (K.H. Ecker).

0377-2217/03/$ - see front matter � 2003 Elsevier Science B.V. All rights reserved.

PII: S0377-2217 (02)00236-9

European Journal of Operational Research 146 (2003) 403–416

www.elsevier.com/locate/dsw

mail to: antonio@faro.ens.uabc.mx

In this paper we consider on-line scheduling of

unit execution time (UET) tasks. We distinguish

several levels of knowledge about newly arriving

tasks and analyze performance guarantees of

list scheduling algorithms under various dynamic

assumptions. We show that, depending on the
available knowledge, the well-known Graham�s
bound can be improved. We distinguish three

levels of knowledge available for dynamic sched-

uling.

Level I. At each point of time we have knowl-

edge about the tasks that are ready to be started.

We also know the duration of tasks (we restrict

ourselves to UETs). Though new tasks can arrive
at any moment, tasks are started at integer times.

Level II. In addition to level I, the information

whether or not immediate successors of each ready

task exist is available.

Level III. In addition to level I, the number of

immediate successors of each ready task is known.

For analysis of the performance we make four

different assumptions:

Assumption 1. The information of level I is avail-

able for analysis.

Assumption 2. The total number of tasks and the

length of the longest chain in the task system are

also available.

Assumption 3. The total number of tasks and the

ratio of tasks without successor and tasks with

immediate successors are available.

Assumption 4. The total number of tasks, number

of tasks without successors and the length of the

longest chain in the task system are available.

To motivate the introduction of the levels

of knowledge available for dynamic scheduling

(especially levels II and III) we can consider a

scheduling of processes that spawn other pro-

cesses. A parallel program can be represented by a

dynamic precedence task graph (dynamic spawn

task graph) that is constructed at run time. In such

a model the set of tasks is not known exactly in
advance. Each node can be considered as a process

(an instruction or a group of instructions) that is

able to spawn other processes. In this case the

precedence relation between tasks is interpreted as

spawn precedence. Ti � Tj means that during the

processing of Ti, Tj is being created. In this paper

we assume that Tj can be started only after Ti is

completed.
A process can create child processes dynami-

cally via, for instance, the fork() system call. These

in turn can create further child processes and so on.

The knowledge of the number of immediate suc-

cessors of each process becomes very important

especially for distributed programs that use the

spawn system call intensively. For instance, Mosix

[1], a software package that enhance the Linux
kernel with cluster computing capabilities, consid-

ers a number of such descendant processes to justify

migration of the parent process for load balancing.

To estimate and verify the quality of a schedule

obtained during the dynamic execution of the task

system and to calculate performance bounds we

perform an analysis under the above assumptions.

Additional knowledge such as the total number of
tasks, number of tasks without successors and the

length of the longest chain in the task system could

help to verify its worst case behavior and justify a

particular choice of algorithm. Such an informa-

tion can be obtained for instance by performing a

postmortem analysis, by the prediction perfor-

mance analysis on the PRAM, or by the analysis

of task graphs on an unbounded number of pro-
cessors.

Section 2 introduces the notation of scheduling

problems. In Section 3 we review some known

results for the deterministic case of scheduling of

UET tasks with arbitrary precedence constrains on

a set of identical processors, subject to minimizing

makespan. Furthermore we show some new results

that consider the length of the longest task chain in
the precedence graph. In Section 4 we discuss al-

gorithms for the same problem under different

levels of knowledge available for scheduling. In

Section 5 we present some experimental results.

2. Notation

Following the notation given in [2] for deter-

ministic scheduling problems, we denote by T ¼

404 A. Rodr�ııguez D�ııaz et al. / European Journal of Operational Research 146 (2003) 403–416

fT1; . . . ; Tng the set of n tasks. Assume that the

order in which the tasks can be processed on m
identical processors P1; . . . ; Pm is restricted by some

precedence relation � over the set T. Further-

more, non-preemptive scheduling is assumed.

Generally we deal with greedy schedules, i.e. in
which tasks are assigned to processors as early as

possible. This strategy does not allow a processor

to be idle as long as there are tasks available for

processing.

There are several possibilities to define sched-

ules formally. For the problem types considered

here it would suffice to specify for each task the

processor it is processed on, and the start time. For
our purposes, however, the following definition

appears to be more suitable. A schedule is defined

as a function S : RP 0 ! ðT [fegÞm, where e, the

idle processor, is used to express the situation that

a processor does not process any task, and

SðtÞ ¼ ðTa1
; . . . ; TamÞ with Taj 2 T [feg for j ¼

1; . . . ;m, specifies the tasks assigned to processors

P1; . . . ; Pm at time t. Let t0 < t1 <

 < tf be the
points of time where function S changes. We refer

to the interval ½ti; tiþ1Þ as the ith (time) slot of S.

Obviously, S is uniquely specified by the sequence

SðtiÞ j i ¼ 0; . . . ; tf�1. W.l.o.g. we assume that the

first slot starts at time t0 ¼ 0. tf is referred to as the

length or makespan of S, denoted by CðSÞ or

shortly by C.

In the special case that tasks have unit pro-
cessing times, the ith (time) slot is ½i; iþ 1Þ.

The general objective in this paper is to find a

schedule that executes the given set of tasks in

minimal possible time (scheduling problem with

minimizing makespan criterion). In the short

three-field notation machine jtaskj criterion pro-

posed by Graham et al. [3] and Bła _zzewicz et al.

[4], this problem is characterized as P jprec; pj ¼
1jCmax.

Before going into details we make some general

remarks well known in the theory.

Since exact algorithms such as branch and

bound, dynamic programming and other enu-

merative techniques are very time consuming for

most problem classes (to which practical problems

usually also belong), one may apply heuristic al-
gorithms. These allow generating solutions in

reasonable time, even for large problem instances,

but, except for specific cases, there is no general

way to make a statement about the quality of the

solution. Another approach is list (or priority

driven) strategies by which we consider algorithms

that assign priorities to the tasks. The tasks may be

understood as being arranged in the list in de-
creasing order of their priorities. A processor be-

coming idle ‘‘grabs’’ a task of the highest priority

from the list in a greedy way. It is obvious that list

algorithms are not optimal in general; therefore a

careful analysis of the property of the priority as-

signment informing about their worst case per-

formance would be useful.

Let I be a problem instance for P jprec; pj ¼
1jCmax, and let SoptðIÞ be an optimal schedule for I
with makespan CoptðIÞ. For a list algorithm A, let

SAðIÞ be the corresponding schedule with make-

span CAðIÞ. With rAðIÞ ¼ CAðIÞ=CoptðIÞ we denote

the performance ratio of algorithm A for instance I.
To measure the overall quality of A we define the

performance of A by

rA ¼ supfCAðIÞ=CoptðIÞ j I is a problem instanceg:

We may sometimes wish to know how accurate

list algorithms are in general. For the minimizing

makespan criterion, for example, let CwðIÞ denote

the longest makespan of a schedule obtained by

applying any list algorithm on an instance I. The

worst case behavior of list algorithms, denoted by

rw :¼ supfrA jA is an arbitrary list algorithmg;
gives an upper bound on the performance of any

list algorithm. By Cw ½Copt� we denote the length of

an arbitrary greedy [respectively: optimal] sched-

ule.

For analyzing some given schedule S, the fol-

lowing notation may be useful: At some time
tP 0, the number of tasks being processed is de-

noted by nt, and zt :¼ m� nt is the number of idle

processors at time t. An idle interval is an interval

during which some processor does not process any

task. Recall that in a greedy schedule, an idle in-

terval can only occur if no task is available for

processing. Let z ¼
P

zt denote the sum of lengths

of idle intervals in the schedule within the time
span 0 (start time of the schedule) and Cmax (end of

the schedule). Likewise, zopt, zA and zw are the

corresponding respective sums for an optimal

A. Rodr�ııguez D�ııaz et al. / European Journal of Operational Research 146 (2003) 403–416 405

schedule, a schedule generated by algorithm A,

and a general greedy schedule.

Given an instance, we denote by Lc the longest

chain in the precedence graph, and by lc its length.

3. Properties of the deterministic case

To construct an optimal off-line schedule, we

may apply an exact algorithm. For example for

P jprec; pj ¼ 1jCmax, if prec is an in-tree or out-tree,

Hu�s level algorithm [5] is optimal and of linear time

complexity. El-Rewini et al. [6] consider an algo-

rithm for scheduling interval-ordered tasks on an
arbitrary number of processors. The properties of

interval orders make it possible to apply a simple

greedy algorithm that calculates the number of

immediate successors as a priority. It leads to an

optimal schedule when all tasks have the UET. This

algorithm solves the P jinterval- ordered; pj ¼ 1jCmax

for interval order (V,E) in OðjEj þ jV jÞ time (see

also [7]). Chen and Liu [8] and Kunde [9] discussed
the performance of the level algorithm when ap-

plied to general precedence graphs. For two pro-

cessors and general precedences (i.e. P2jprec; pj ¼
1jCmax), the problem can be solved in quadratic time

[10]. Garey and Johnson [11] devised an optimal

algorithm for the same problem. If the precedence

relation is of bounded width k (i.e. each subset of

k þ 1 tasks has at least one pair of dependent tasks)
the problem P jwidth-k; pj ¼ 1jCmax can be solved in

OðnkÞ time [12].

We know, however, that the more general

problem P jprec; pj ¼ 1jCmax is NP-hard, hence, one

way to get solutions in reasonable time is to apply

approximation algorithms. For list scheduling al-

gorithms Graham [13] showed that the perfor-

mance bound r ¼ Clist=Copt is 2 � 1=m. The
application of the critical path algorithm to solve

P jprec; pj ¼ 1jCmax has been analyzed by Kunde

[9], and the following bound have been proved:

r ¼ 2 � ð1=m� 1Þ for mP 3. The algorithm given

by Braschi and Trystram [14] is slightly better, its

bound is r ¼ 2 � ð2=mÞ � ððm� 3Þ=ðm
 CmaxÞÞ for

mP 3. Regarding the time complexity of schedul-

ing algorithms we have to emphasize that even the
problem Pmjprec; pj ¼ 1jCmax (with a fixed number

of processors) is still of unknown time complexity

despite the fact that many papers have been de-

voted to solving various cases of precedence con-

straints (see [2] for more details).

In the following we summarize some simple

known properties of optimal and greedy schedules

under the deterministic assumption and discuss a
strategy that appears to be useful for dynamic

cases. We restrict ourselves to the case of UETs.

For any arbitrary schedule it is obvious that

C ¼ ðnþ zÞ=m, where z is the sum of lengths of idle

intervals in the schedule.

Define the layer function k : T ! N0 as in [5]

recursively by kðT Þ ¼ 1 if T has no predecessors,

and kðT Þ :¼ maxfkðT 0Þ þ 1 jT 0 � Tg. Let Ki :¼
fT jkðT Þ ¼ ig, and ni :¼ jKij ði ¼ 1; . . . ; lcÞ, where

lc is the length of the longest chain in the task

system. Refer to Ki as the ith layer. The layer and

co-level are coincided for UET task system.

We start our analysis by considering a simple

scheduling algorithm.

Primitive strategy. Schedule the tasks of each

layer separately: starting with the first layer, the
tasks of K1 are assigned arbitrarily in a greedy way

to the processors. The number of time slots required

for the tasks of K1 is dn1=me. Then the tasks of K2

are assigned by starting a new time slot, and so on.

Notice that precedences will not be violated by

this strategy. Furthermore, for each layer 1; . . . ; lc,
there will be at most one time slot that is not

completely filled with tasks, i.e. has between 1 and
m� 1 idle processors. Suppose the number ni of

tasks the ith layer Ki is smaller than or equal to m.

Then the primitive strategy algorithm fills the tasks

of Ki in a single time slot, thus using ni processors,

and leaves m� ni processors idle. On the other

hand, if ni > m, the algorithm fills bni=mc slots

completely. If there are some tasks left (i.e. if

ni mod m > 0Þ, then an additional slot will be used
for the remaining ni mod m tasks; this slot has

m� ðni mod mÞ > 0 idle processors.

Obviously a schedule constructed by this algo-

rithm will not necessarily be greedy. The reason is

that the number of tasks in a layer is not an integer

multiple of m in general, and the primitive strategy

does not take tasks from the next layer. In the at-

tempt to improve the schedule, depending on the
structure of the precedence relation and the order

in which the tasks of a layer are scheduled, we

406 A. Rodr�ııguez D�ııaz et al. / European Journal of Operational Research 146 (2003) 403–416

might be able to shift some of the tasks of a layer to

an earlier time in the schedule. Hence, the length of

a greedy schedule is less than or equal to the length

of a schedule obtained by the primitive strategy.

Lemma 1. The following facts are known (see, e.g.
[15]):
(1) For any instance of P jprec; pj ¼ 1jCmax, the

number of zw idle intervals in any greedy sched-
ule is limited by lcðm� 1Þ.

(2) Cw 6 ðn� lcÞ=mþ lc.
(3) ðnþ zoptÞ=mP lc.
(4) For an arbitrary task graph, Cw � Copt 6

lcðm� 1Þ=m.

Consider a schedule generated by the primitive

strategy and the corresponding greedy schedule.

Since at most one time slot with idle intervals can

occur for each layer, the sum of idle intervals is

zw 6 lcðm� 1Þ. If Cw ¼ lc, then the schedule is al-

ready greedy, and each slot has at least one task

(that of the chain Lc). If Cw > lc then there must be
a layer Ki with ni > m. In this case, the constructed

schedule is not necessarily greedy, and some of the

tasks of the next layer might be shifted to an ear-

lier time in the schedule. Denote by Si the sequence

of time slots used by the primitive strategy for the

tasks of Ki; i ¼ 1; . . . ; lc. If Si has an idle interval,

processing a task of Kiþ1 in Si would decrease

the number of idle intervals in Si, but increase the
number of idle intervals in Siþ1. Thus, making the

schedule greedy will not increase the total length of

the schedule, and hence the upper bound lcðm� 1Þ
remains the same for greedy schedules.

With Cw ¼ ðnþ zwÞ=m and zw 6 lcðm� 1Þ, we

get Cw 6 ðnþ lcðm� 1ÞÞ=m ¼ ðn� lcÞ=mþ lc, that

is similar to Brent�s lemma [16]. If Copt ¼ lc, then

ðnþ zoptÞ=m ¼ lc. If Copt > lc, then ðnþ zopt=
m > lcÞ. The case of Copt < lc is not possible, hence

lc 6 ðnþ zoptÞ=m. Cw � Copt ¼ ððnþ zwÞ � ðnþ
zoptÞÞ=m ¼ ðzw � zoptÞ=m. Since zw 6 lcðm� 1Þ and

zopt P 0, the maximum difference is lcðm� 1Þ=m.

4. Scheduling under dynamic assumptions

According to the levels of available knowledge

about the task system introduced in Section 1, we

distinguish different algorithms and perform their

analysis under the various assumptions.

4.1. Level I

Algorithm. On this level of knowledge we are only
able to apply a general list strategy.

Analysis under Assumption 1. Before completion

of a task, we do not have any information about

tasks. Hence it may happen that the chosen order

in which the ready tasks are processed turns out to

be bad. As compared to the best sequencing

(which of course we do not know at run-time, but
can be verified afterwards), Lemma 1[(1), (2)] gives

rw 6 1 � 1=mþ n=ðnþ zoptÞ. For an arbitrary task

graph zopt P 0, hence rw 6 2 � 1=m. So we get a

theoretical performance rw for arbitrary task

graphs as given by Graham�s bound, 2 � 1=m [15].

Analysis under Assumption 2. We next adopt

Assumption 2 and estimate rw. Based on the known

parameters n and lc we are able to derive a more
accurate performance bound of any greedy strategy.

Theorem 1. Given a set T of UET tasks, the per-
formance of the general list strategy can be esti-
mated by

rw ¼ minfr0w; r00wg with r0w 6 1 þ lc
n
ðm� 1Þ

and r00w 6 1 þ 1

m
n
lc

�
� 1

�
: ð1Þ

Furthermore, r0w is tight in the case of lc 6 n=m, and
r00w is tight in the case of lc > n=m.

Proof. From Lemma 1 we know Cw 6 ðn� lcÞ=mþ
lc. Obvious lower bounds for Copt are Copt P n=m,

and Copt P lc. From this the bounds r0w and r00w
follow immediately. To prove tightness of the

bounds, notice first that

• rw ¼ 2 � 1=m in case of lc ¼ n=m,

• r0w < r00w for lc < n=m, and

• r0w > r00w for lc > n=m.

Choose the following problem instance: n ¼
kmþ lc tasks, organized in mþ 1 chains, one of

length lc [chain Lc] and m chains each of length

A. Rodr�ııguez D�ııaz et al. / European Journal of Operational Research 146 (2003) 403–416 407

k 2 N. An optimal schedule is obtained by

assigning the tasks of Lc to one processor, and the

tasks of the other chains in a greedy way. The

worst greedy schedule is obtained by scheduling

first the tasks of the m chains, thus filling the first k
time slots completely, and then assigning the tasks

of Lc. The length of this schedule is k þ lc.
If we choose lc ¼ n=m ¼ km=ðm� 1Þ, i.e. n ¼
km2=ðm� 1Þ, we get Copt ¼ lc, and rw ¼ 2� 1=m.

If lc < km=ðm� 1Þ we get Copt ¼ lc þ ðkm�
lcðm� 1ÞÞ=m; the ratio rw ¼ Cw=Copt in this case

is 1 þ lcðm� 1Þ=n ¼ r0w.

If lc > km=ðm� 1Þ we get Copt ¼ lc, and the ra-
tio rw ¼ Cw=Copt is ð1 þ ð1=mÞððn=lcÞ � 1ÞÞ ¼
r00w. �

Fig. 1 shows the dependency between rw and the

number m of machines. It shows that there is a

trade-off for a given value of m, which depends on

the number of tasks and the length of the critical

path.
Fig. 2 shows the performance bound for task

graphs with different lc, when the number of ma-

chines m varies.

4.2. Levels II and III

In this section we study two algorithms that use

additional information about the immediate suc-
cessors of ready tasks: The first algorithm uses the

fact of existence of immediate successors. The

second algorithm takes the number of immediate

successors into consideration. We show that the
performance guaranties of both algorithms are the

same.

Immediate successors first (ISF) algorithm. Let

us now assume that at each point of time we have

additional knowledge about the fact of the exis-

tence of immediate successors of all ready tasks.

The following algorithm makes use of the avail-

able information by giving tasks with immediate
successors a higher priority as compared to those

without successor.

Algorithm 1 (ISF algorithm). Maintain two lists

of current available tasks: one contains the tasks

with immediate successors, and the other those

without successors. The tasks of the first list are

processed prior to the tasks of the second list. If
the processing of a task T is started, it is erased

from the list. Upon completion of the task T its

immediate successor tasks become available and

are entered in the corresponding list according to

the existence of their immediate successors.

begin
Let Q>0 and Q¼0 be the lists of tasks that are

ready to be started, with and without immediate
successors, respectively;

repeat
for each completed task do

Insert its ready immediate successor tasks

in Q>0 or Q¼0, according to the existence

of their immediate successors; – a task is

ready if all its immediate predecessors are

completed

Fig. 1. Worst case ratio rw, when keeping the number of tasks

and the length lc fixed, and varying the number machines

ðn ¼ 1000; lc ¼ 50Þ.

Fig. 2. Worst case ratio rw, varying the number m of machines

and the length lc of the longest chain ðn ¼ 1000Þ.

408 A. Rodr�ııguez D�ııaz et al. / European Journal of Operational Research 146 (2003) 403–416

for each idle processor do
if Q>0 6¼ ;
then Assign the first task T from Q>0 for

processing

else Assign the first task T from Q¼0 for
processing;

Remove T from its list;

until Q>0 and Q¼0 are empty;

end;

Maximum number of immediate successors first
(MISF) algorithm. A version of ISF, referred to as

MISF, is obtained if only one list of tasks is used
where the tasks are sorted in decreasing order of

the number of immediate successors.

Algorithm 2 (MISF algorithm)

begin
Let Q ¼ ðT1; . . . ; TrÞ be the sorted list of tasks

that are ready to be started;

repeat
for each completed task do

Insert its ready immediate successor tasks

in Q in decreasing order of their number

of immediate successors;

for each idle processor do
Assign the first task T from Q for process-

ing, and remove T from Q;

until Q is empty;
end;

Analysis under Assumption 1. The advantage of

ISF and MISF as compared to an arbitrary greedy

strategy (as can only be applied in case of As-

sumption 1) is that the execution of a task with no

successor is delayed until there are not enough

other tasks to fill a whole time slot. To see that the
bound of Theorem 1 is tight for the levels II and

III, consider the following example: let q be an

arbitrary integer, and be given m chains, each of

length ðm� 1Þq, and one chain of length mq. The

total number of tasks is m2q, and it is possible to

schedule the tasks optimally in mq time. Notice

that lc ¼ n=m. Since all tasks, except the last mþ 1

tasks of the chains, have exactly one immediate
successor, the algorithm could start with the tasks

of the shorter chains and execute them except the

last m ones. This takes ðm� 1Þq� 1 time slots.

Then ISF or MISF processes the tasks of the long

chain, altogether with the m remaining tasks of the

short chains; this requires mq time slots. So alto-

gether we get a schedule of length ðm� 1Þq� 1þ
mq ¼ 2mq� q� 1. With this the performance of

ISF or MISF is

rISF ¼ CISF

Copt

¼ 2mq� q� 1

mq
¼ 2 � 1

m
� 1

mq
;

which tends to 2 � 1=m for large values of q. We

see from this example that ISF and MISF have the

same worst case bound under Assumption 1.

Analysis under Assumption 2. This analysis is

reduced to the analysis under Assumption 2 with
available knowledge of level I.

Analysis under Assumption 3. Under this as-

sumption additional information about the ratio

of tasks without successor and tasks with imme-

diate successors of the task graph is available.

Denote by T0 the set of tasks without successor

(out-degree¼ 0, ‘‘leaves’’), and let T>0 :¼ T� T0

the set of tasks with immediate successors (out-
degree> 0, ‘‘inner tasks’’). Let n0 :¼ jT0j, n>0 :¼
jT>0j ¼ n� n0, and assume that n0 and n>0 are

more than 0. Let denote by s00 the number of slots

filled only with leaves.

Consider the special case where s00 ¼ 1. In view

of Lemma 1 ½Zw 6 lcðm� 1Þ�, s00 ¼ 1 implies that

the number of tasks with out-degree¼ 0 is

n0
6 Zw ¼ lcðm� 1Þ.

Lemma 2. If s00 ¼ 1, then rISF 6 ð1=1 þ rÞþ
1 � 1=mþ 1=n, where r ¼ n0=n>0 is the ratio of out-
degree¼ 0 tasks and out-degree> 0 tasks.

Proof. If s00 ¼ 1, then the tasks with out-degree¼ 0

are processed together with Lc, and the ISF algo-

rithm gives ZISF 6 zw � n0. Hence

CISF 6 ðnþ lcðm� 1Þ � ðn0 � 1ÞÞ=m
¼ ðnþ mlc � lc � n0 þ 1Þ=m
¼ ðn� lc � n0 þ 1Þ=mþ lc:

We get for the performance ratio

rISF 6 ðn� n0 þ 1Þ=nþ ð1 � 1=mÞlc=Copt;

i.e. using the lower bound lc for Copt,

A. Rodr�ııguez D�ııaz et al. / European Journal of Operational Research 146 (2003) 403–416 409

rISF 6
1

1 þ r
þ 1 � 1

m
þ 1

n
: �

For example, if T0 and T>0 have the same

cardinality, then r ¼ 1, and rISF < 3=2 � 1=mþ
1=n.

Fig. 3 shows the behavior of rISF when varying

the number of machines and the number n0 of

tasks without successors, while keeping the num-

ber of tasks fixed.

Analysis under Assumption 4. If we have

knowledge about the number of tasks, the length

of the longest chain and the number of tasks

without successors, we are able to derive better
estimations for the performance of MISF and ISF.

ISF-schedules. The ISF-strategy has the prop-

erty that it does not distinguish between different

out-degrees > 0. In extreme, the ISF-algorithm

could give all tasks of out-degree > 0 and not be-

ing in Lc a higher priority. We assume that the

algorithm chooses the tasks of Lc at the latest

possible time for processing, and let SISF be a
schedule generated by the ISF-algorithm in this

way. We discuss some simple properties of SISF.

Analyzing the sequence of time slots of SISF, we

see that there are time slots that have a task of Lc

(some longest chain of length lc), and there may be

other slots that have no task of Lc. Consider a slot

si that has no task of Lc, and assume that there is

a later slot sj ðj > iÞ in SISF that has a task Tk of Lc.
If Tk has out-degree > 0, then si can neither

have an idle interval nor can contain a task of

out-degree ¼ 0, because otherwise the ISF-strat-

egy would already have scheduled Tk in si.
As a consequence, if lc P 2, the only idle in-

tervals that may occur in SISF are found in those

slots where a task of Lc is scheduled. Notice that

the number of time slots with idle intervals is
bounded from above by lc.

Assume that lc P 2, and let the ðlc � 1Þth task

of Lc be scheduled at some time t (i.e. in slot t).
Then consider the time slots from 0 to t � 1 that

contain no task of Lc. We know from the above

discussion that in these slots, we find only tasks of

out-degree > 0, and no idle tasks. With s0 we de-

note the number of these time slots, i.e. s0 ¼
t � lc þ 2.

Next we claim that in the schedule SISF we may

find only tasks of degree¼ 0 from time t þ 1 on.

Suppose a task of degree> 0 is scheduled at time

t0 P t þ 1. This, however, leads to a contradiction

with the assumption that the tasks of Lc are sched-

uled with the smallest priority among the tasks with

out-degree> 0, i.e. at the latest possible time.
We distinguish three kinds of slots, those con-

taining (a) a task of Lc, (b) no task of Lc, and (c)

only leaves. We know that lc is the number of

slots, each with a task from Lc, and possibly other

tasks from T>0 or T0.

Let

s0 be the number of slots with tasks from

T>0 � Lc.
s00 be the number of slots filled only with leaves.

Obviously, CISF ¼ s0 þ s00 þ lc � 1. We sub-

tracted 1 because one slot counted in lc is filled

only with leaves, and thus is also counted in s00. To

optimize schedule SISF, we should exchange the

positions of certain tasks, but there is no advan-

tage to shift leaves to earlier slots. Hence the

number of s00 slots in SISF will not be smaller in an
optimal schedule, and as a consequence,

Copt P lc þ s00 � 1.

Theorem 2. The performance of the ISF-algorithm
can be estimated as rISF 6 minfr0ISF; r

00
ISFg, where

r0ISF ¼ 1 þ lc
n
ðm� 1Þ � n0 � mðs00 � 1Þ � 1

n

and r00ISF ¼ 1 þ 1

m
n
lc

�
� 1

�
� n0 � 1

mlc
: ð2Þ

Fig. 3. Worst case ratio rISF, varying the number m of machines

and the number n0 ðn ¼ 1000Þ.

410 A. Rodr�ııguez D�ııaz et al. / European Journal of Operational Research 146 (2003) 403–416

Proof. There are two lower bounds for Copt. The

first bound can be estimated as Copt P n=m, and

the other bound is Copt P lc þ s00 � 1.

Let us first derive an upper bound for rISF by

using the first upper bound for Copt P n=m. With
n>0 ¼ n� n0 P s0mþ lc � 1 we get

r0ISF 6 ðs0 þ s00 þ lc � 1Þm
n

6
n>0mðs00 � 1Þ þ 1 þ ðm� 1Þlc

m

 m
n

¼ 1 þ n>0mðs00 � 1Þ þ 1 � n
n

þ lc
n
ðm� 1Þ;

which gives

r0ISF 6 1 þ lc
n
ðm� 1Þ � n0 � mðs00 � 1Þ � 1

n
:

Notice that, because of n0 Pmðs00 � 1Þ þ 1, this

bound is better than the bound rw of Theorem 1

(see also Fig. 4).

Next we derive an upper bound for rISF by using

Copt P lc þ s00 � 1:

r00ISF 6
s0 þ s00 þ lc � 1

lc þ s00 � 1
¼ 1 þ s0

lc þ s00 � 1
6 1 þ s0

lc
(because s00 � 1 P 0). We get

r00ISF 6 1 þ n� lc þ 1 � n0

mlc

¼ 1 þ 1

m
n
lc

�
� 1

�
� n0 � 1

mlc
: �

From Fig. 5 we see that for increasing values of

n0, and while keeping n fixed, the performance

faster approaches the lower limit 1.

5. Experimental studies

We present results of experiments conducted by
Rodr�ııguez Alc�aantar [17] and Tchernykh to study

the average behavior of the performance of MISF

in comparison to ARB (an arbitrary/random list

strategy), MICF (minimum co-level first), MACF

(maximum co-level first) dynamic list scheduling

heuristics, and Hu�s heuristic (MLF) that gives an

optimal solution for trees of UET tasks. MICF is

similar to FIFO scheduling that explores the task
graph in a width-first manner, and MACF is

similar to LIFO scheduling, i.e. a depth-first exe-

cution. The experiments analyze the average be-

havior of these algorithms for problem instances

of P jprec; Pj ¼ 1jCmax. Two kinds of experiments

are performed, first under the assumption of out-

forests, and then for arbitrary precedence con-

straints.

5.1. Out forests

In this section, the comparison test consists of

applying dynamic heuristics to out-trees/out-
forests. Tree structures occur in a wide variety of

applications, including some form of divide and

conquer algorithms, recursive calculations orga-

nized as a tree, such as summation, p-product,

algorithms for tree architectures, parallel evalua-

tion of arithmetical expressions, assembly line

scheduling problems, network unification [18,19],

Fig. 4. Performance ratios keeping the number of tasks n, lc,
and n0 fixed, and varying the number m of machines

ðn ¼ 1000; lc ¼ 30; n0 ¼ 200; s00 ¼ 1Þ.

Fig. 5. Worst case ratio rISF, varying the number of machines m

and the number n0 ðn ¼ 1000Þ.

A. Rodr�ııguez D�ııaz et al. / European Journal of Operational Research 146 (2003) 403–416 411

fork graphs and other. Notice that Hu�s optimal

algorithm is of no use because only local infor-

mation about task dependencies is available in

dynamic situations. In the simulation, we analyze

out-forests with 20, 100, 1000 tasks. For each of

these numbers, 100 task instances were randomly
generated. Average values of some parameters of

the generated set of task graphs are shown in

Table 3. The performance ratio is calculated sep-

arately for each heuristic. The mean and standard

deviation of the performance ratio are measured

for each test. As a measure of the solution quality,

the deviation from MISF is analyzed for each of

three algorithms. For a given heuristic A, the PRI
deviation from the MISF is defined as average of

ðrA � rMISF=rMISFÞ � 100, and the worst deviation

as maximum of PRI for the set of instances. PRI

stands for the average percentage of the perfor-

mance ratio improvement gained by the algorithm

MISF over algorithm A.

Figs. 6 and 8 show average performance ratios

for out-forests with 100 and 1000 tasks, respec-
tively, versus the number of processors. Figs. 7 and

9 summarize the deviation of the average perfor-

mance ratios of MICF, MACF and arbitrary list

scheduling from MISF for out-forests with, re-

spectively, 100 and 1000 tasks.

Notice that the behavior of the average per-

formance ratios (see Figs. 6 and 8) are similar to

the behavior of the upper bounds claimed in
Theorems 1 and 2 for arbitrary list scheduling and

MISF. The performance ratio and improvement

increase as the number of m increases up to the

number of processors m � n=AVGðlcÞ, where

AVGðlcÞ is the average length of longest chains in

the instances (see Fig. 4, where the peak of the

bound is reached for m ¼ n=lc). After the peak the

ratio decreases and tends to 1 while m gets close to

maxðni :¼ jKij; i ¼ 1; . . . ; lcÞ, where ni is the num-

ber of tasks in the ith layer.Fig. 6. Average performance ratio for graphs with 100 tasks.

Fig. 8. Average performance ratio for graphs with 1000 tasks.

Fig. 7. Percentage of the average performance ratio improve-

ment for graphs with 100 tasks.

Fig. 9. Percentage of the average MISF performance ratio

improvement for graphs with 1000 tasks.

412 A. Rodr�ııguez D�ııaz et al. / European Journal of Operational Research 146 (2003) 403–416

The latter reflects the fact that, as the number of

processors increases, fewer tasks will be delayed

due to processor limitation, and hence for suffici-

ently many processors, every greedy heuristic gives

an optimal solution (or very near optimalon average).

Table 1 summarizes performance ratios and
percentages of their standard deviations. We see

that MISF gives more stable results with the

smaller standard deviations as compared to the

other heuristics. Notice that the deviation of MISF

from optimal is at most 0.6% and remains almost

optimal for the different problem sizes.

From Table 2 we conclude that MISF gives up

to 9.75%, 18.08%, and 24.91% of the maximal
improvement over other heuristics for respective

20, 100, and 1000 tasks in the graphs. Moreover,

on average for different number of machines, it

gives up to 7.56% of the improvement.

The worst deviation of MICF, MACF, and

ARB from MISF reaches slightly more than 20%.

It increases with the problem size (see Fig. 10). We

can interpret this result in such a way that MISF

handles bigger numbers of tasks better than other

heuristics (Table 3).

5.2. Arbitrary task graphs

In this section, we present results of experiments

comparing heuristics applied to arbitrary task

Table 1

Average performance ratio and percentage of the performance ratio standard deviation

n MISF MICF MACF ARB

PR S.D. (%) PR S.D. (%) PR S.D. (%) PR S.D. (%)

20 1.0001 0.46 1.026 5.13 1.054 7.19 1.032 5.60

100 1.0001 1.05 1.096 8.48 1.070 10.29 1.067 7.50

1000 1.0060 0.98 1.030 4.30 1.032 4.94 1.023 4.05

Table 2

Maximum and average percentage of MISF performance ratio improvement over MACF, MICF heuristics and arbitrary list schedule

n MACF (%) MICF (%) ARB (%)

Maximum Average Maximum Average Maximum Average

20 9.75 2.57 12.48 2.69 6.60 1.65

100 18.08 7.56 20.13 7.53 15.00 5.63

1000 24.91 3.62 19.31 2.66 22.00 2.99

Fig. 10. Worst deviation vs. increasing problem size.

Table 3

Average parameters of task graphs generated

n maxðniÞ # Trees in a forest lc # Successors n0

20 6.99 3.13 7.78 4.48 9.69

100 20.54 7.07 25.55 10.87 44.02

1000 136.87 11.94 231.6 86.27 388.12

A. Rodr�ııguez D�ııaz et al. / European Journal of Operational Research 146 (2003) 403–416 413

graphs (see Table 6). The competitive ratio is cal-

culated over a lower bound of optimal solution
that is the maximum of n=m and lc. Fig. 11 shows

the average performance for graphs with 1000

tasks for different numbers of processors. Fig. 12

summarizes the deviation of the average per-

formance MLF, MICF, MACF, and ARB

from MISF for graphs with 1000 tasks. Notice

that the behavior of the average competitive ra-

tios for arbitrary graphs are similar to the behavior

of the performance ratios for out-forests (Tables
4–6).

6. Conclusion and future work

This paper addressed the problem of dynamic

non-preemptive list scheduling of P jprec; pj ¼
1jCmax. We have analyzed the worst behavior of
arbitrary list scheduling strategies, the ISF and

MISF heuristics and presented their performance

guaranties under the four different assumptions.

We have shown that additional knowledge such as

the total number of tasks, number of tasks without

successors and the length of the longest chain in

the task system allow a more accurate analysis

of the performance bounds. Our new bounds reach
the maximum value of Graham�s bound in the

point m ¼ n=lc, and tend to 1 while increasing the

number of machines. For both regions, m < n=lc
and m > n=lc, bounds (1) and (2) are better.

We provided simulation results comparing the

effectiveness of MISF against previously known

dynamic heuristics. The experiments confirm an

advantage of the MISF in the average case. The
measurements are based on randomly generated

out-forests, to cover a wide variety of tree char-

Fig. 11. Average performance ratio for graphs with 1000 tasks.

Table 4

Average performance ratio and percentage of the performance ratio standard deviation

n MLF MISF MICF MACF ARB

PR S.D. (%) PR S.D. (%) PR S.D. (%) PR S.D. (%) PR S.D. (%)

1000 1.0032 2.27 1.0260 4.41 1.0584 9.12 1.0582 9.31 1.0518 8.93

Table 5

Maximum and average percentage of MISF performance ratio improvement over MLF, MACF, MICF heuristics and arbitrary list

schedule

n MLF (%) MICF (%) MACF (%) ARB (%)

Maximum Average Maximum Average Maximum Average Maximum Average

1000)7.85)1.52 10.77 2.62 9.14 2.39 9.50 2.38

Fig. 12. Percentage of the average MISF performance ratio

improvement for graphs with 1000 tasks.

414 A. Rodr�ııguez D�ııaz et al. / European Journal of Operational Research 146 (2003) 403–416

acteristics. This simulation results for dynamic
scheduling are close to those of [20] for static

scheduling for linear Algebra DAGs that used a

modification of the known critical path-most

immediate successor first (CP-MISF) heuristic,

where, in contrast to our assumptions, informa-

tion about the critical path is available. Experi-

mental results in [20] show that CP-MISF is within

1% off the optimum. In our work, we assume that
information about the critical path is not avail-

able, but the number of immediate successors is

available for scheduling. The effectiveness of the

MISF depends on several parameters of the task

system; the key point is a sufficiently large number

of tasks without successors. To fully validate the

MISF heuristic for the average case, more accu-

rate analysis of generation schemes for the com-
putational testing that may not introduce biases

into computational results should be done [21],

and directed acyclic graphs (DAGs) generated

from real world parallel applications have to be

tested.

Further more accurate measurements using

MISF for arbitrary task graphs comparing with

optimal solutions are currently under way. Future
investigations will be carried out for the ISF and

MISF heuristics in the context of non-unit execu-

tion times and with or without task preemption.

Acknowledgements

The authors take pleasure in acknowledging
Denis Trystram for his useful suggestions during

the preparation of the paper, and the anonymous

referees whose valuable remarks and comments

helped to improve the paper. Part of this work was

supported by CICESE (Centro de Investigaci�oon

Cient�ııfica y de Educaci�oon Superior de Ensenada)

under project #634102, and by CONACYT

(Consejo Nacional de Ciencia y Tecnolog�ııa de
M�eexico) under grant #32989-A.

References

[1] A. Barak, S. Guday, R. Wheeler, The MOSIX Distributed

Operating System. Load Balancing for UNIX, Lecture

Notes in Computer Science, vol. 672, Springer, Berlin, 1993.

[2] J. Bła_zzewicz, K.H. Ecker, E. Pesch, G. Schmidt, J.

We�glarz, Scheduling Computer and Manufacturing Pro-

cesses, Springer, Berlin, 2001.

[3] R.L. Graham, E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy

Kan, Optimization and approximation in deterministic

sequencing and scheduling theory: A survey, Annals of

Discrete Mathematics 5 (1979) 287–326.

[4] J. Bła _zzewicz, J.K. Lenstra, A.H.G. Rinnooy Kan, Sched-

uling subject to resource constraints: Classification and

complexity, Discrete Applied Mathematics 5 (1983) 11–

24.

[5] T.C. Hu, Parallel sequencing, and assembly line problems,

Operational Research 9 (1961) 841–848.

[6] El-Rewini, T. Lewis, H. Ali, Task Scheduling in Parallel

and Distributed Systems, Prentice-Hall, Englewood Cliffs,

NJ, 1994.

[7] C.H. Papadimitriou, M. Yannakakis, Scheduling interval-

ordered tasks, SIAM Journal on Computing 8 (1979).

[8] N.F. Chen, C.L. Liu, On a class of scheduling algorithms

for multiprocessors computing systems, in: T.Y. Feng

(Ed.), Parallel Processing, Lecture Notes in Computer

Science, vol. 24, Springer, Berlin, 1975, pp. 1–16.

[9] M. Kunde, Nonpreemptive LP-scheduling on homoge-

neous multiprocessor systems, SIAM Journal on Comput-

ing 10 (1) (1981).

[10] E.G. Coffman Jr., R.L. Graham, Optimal scheduling for

two-processor systems, Acta Informatica 1 (1972) 200–213.

[11] M.R. Garey, D.S. Johnson, Two-processor scheduling with

start times and deadlines, SIAM Journal on Computing 6

(1977) 416–426.

[12] K.H. Ecker, Scheduling of resource tasks, European

Journal of Operational Research 115 (1999) 314–327.

[13] R.L. Graham, Bounds for certain multiprocessing anom-

alies, Bell System Technical Journal 45 (1966) 1563–1581.

[14] B. Braschi, D. Trystram, A new insight into the Coffman–

Graham algorithm, SIAM Journal on Computing 23

(1994) 662–669.

[15] R.L. Graham, Bounds on multiprocessor timing anoma-

lies, SIAM Journal on Applied Mathematics 17 (1969)

263–269.

[16] R.P. Brent, The parallel evaluation of arithmetic expres-

sions in logarithmic time, in: J.F. Traub (Ed.), Complexity

of Sequential and Parallel Numerical Algorithms, Aca-

demic Press, New York, 1973, pp. 83–102.

[17] E. Rodr�ııguez Alc�aantar, Estudio Experimental de la

Heur�ııstica MISF para Calendarizaci�oon Din�aamica de Ta-

reas en �AArboles y Bosques, CICESE, Ensenada, Baja

California, M�eexico, 1999.

[18] A. Tchernykh, A. Stepanov, A. Lupenko, N. Tchernykh,

Extraction and optimization of the implicit program

parallelism by dynamic partial evaluation, in: pAs�97

The Second Aizu International Symposium on Parallel

Table 6

Average parameters of task graphs generated

n maxðniÞ lc # Successors n0

1000 212.71 413.95 136.29 213.73

A. Rodr�ııguez D�ııaz et al. / European Journal of Operational Research 146 (2003) 403–416 415

Algorithms/Architecture Synthesis, IEEE Computer Soci-

ety Press, Silver Spring, MD, 1997, pp. 322–338.

[19] A. Rodr�ııguez D�ııaz, A. Tchernykh, K. Ecker, Non-deter-

ministic scheduling in an abstract network machine, in:

PCS�97 International Workshop on Parallel Computation

and Scheduling, Ensenada, Baja California, Mexico, 1997,

pp. 47–58.

[20] A. Gerasoulis, I. Nelken, Static scheduling for linear

Algebra DAGs, in: Proceedings of the 4th Conference on

Hypercubes, California, Monterey, Concurrent Computers

and Application, vol. 1, 1989.

[21] N.G. Hall, M.E. Posner, Generating experimental data for

computational testing with machine scheduling applica-

tion. Operations Research, to appear.

416 A. Rodr�ııguez D�ııaz et al. / European Journal of Operational Research 146 (2003) 403–416

	Algorithms for dynamic scheduling of unit execution time tasks
	Introduction
	Notation
	Properties of the deterministic case
	Scheduling under dynamic assumptions
	Level I
	Levels II and III

	Experimental studies
	Out forests
	Arbitrary task graphs

	Conclusion and future work
	Acknowledgements
	References

