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Abstract— Energy consumption represents a large percentage 
of the operational expenses in data centers. Most of the existing 
solutions for energy-aware scheduling are focusing on job 
distribution and consolidation between computing servers, 
while network characteristics are not considered. In this paper, 
we propose a model of power and network-aware scheduling 
that can be tuned to achieve energy-savings, through job 
consolidation and traffic load balancing. We describe a 
methodology to find the best tuning of the Adjustable Scheduler. 
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I.  INTRODUCTION  
Data centers play a very important role in cloud computing 

hosting thousands of computing servers for providing a 
virtually unlimited computational and storage services [1]. 
They require a tremendous amount of energy to operate. The 
cost of the energy consumed by the servers may be greater 
than the cost of the equipment itself [1], [2]. 

In 2010, data centers consumed about the 1.5% of the 
electricity in the world [3]. In 2012, their energy consumption 
was about 15% of global ICT consumption and, it is expected, 
to be increased between 5 and 10% in 2017 [4]. By 2020, it 
is estimated that European data centers consume nearly 93 
TWh [5]. Almost the 75% of the consumption is due to the 
IT equipment and cooling system; the rest is the energy 
distribution and data center operation lost. Annually, in terms 
of CO2 emissions, the energy consumption is equivalent to 
more than 50 million of metric tons [6]. 

In this paper, we propose a scheduler, named Adjustable-
Scheduler (AS), to minimize energy consumption in data 
centers. It is based on the configurable ACCURATE 
scheduler [7]. It can be configured for different types of 
workloads: computation-intensive, communication-intensive 
and balanced. 

The rest of the paper is structured as follows: Section II 
presents background on data center and the motivation of the 
study. Section III reviews related works on energy-aware 

scheduling and network-aware scheduling. Section IV 
presents the problem definition and described AS. Section V 
proposes experimental setup and describes performance 
evaluation methodology. Section VI concludes the paper. 

II. MOTIVATION AND BACKGROUND 
In data centers, the scheduling problem is to allocate a 

finite set of resources to incoming Virtual Machines (VM), 
jobs or tasks [8], [9]. To assign resources (CPU cycles, RAM, 
storage, bandwidth) schedulers have to consider a set of 
constraints and requirements to be accomplished, based on 
the Service Level Agreement (SLA) [10], such as: minimum 
provided computation power, bandwidth, due date, storage 
capacity, etc. 

Schedulers can have different objectives, such as: 
makespan, load balancing, Quality of Service (QoS), energy 
consumption or a combination of them [11], [12]. It has been 
given a particular interest to optimize energy consumption of 
computing resource, with the purpose of reduce data center 
energy consumption through software solutions. 

The main focus of traditional approaches to minimize 
energy consumption is to consolidate VMs on a minimum 
number of physical resources. Another important aspect is the 
data communication. Computing consolidation and data 
balance are conflicting goals. In realistic scheduling systems 
they should be considered together [13]. Only few works take 
into account the data center network characteristics to 
developed energy-aware scheduling strategies [14], [6], [15], 
[7]. The state of the data center network could affect job 
response time, packet loss, deadlines, violations of SLA, 
reduced quality of service, etc. 

It has been showed that workloads in clouds are highly 
heterogeneous [16], [17]. Data centers can receive a great 
range of jobs, from High-Performance Computing (HPC) to 
Data-Intensive.  

Fig. 1 [7] shows the data center topology considered in this 
paper, the three-tier topology [18], which is the most popular 
data center topology [19]. 
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Figure 1.  Three-tier data center architecture. 

 

III. RELATED WORK 
There are several studies on energy efficient schedulers 

that take into account deadline constraints, but do not 
consider the conditions of the data center network. 

ECTC and MaxUtil [20] use consolidation to reduce 
energy consumption without violation of deadline constraints.  

In GCSM (Green Cloud Scheduling Model) [21], and in 
MESF (Most Efficient Server First) [22], a task is allocated 
to the most efficient node (computational resource) that can 
finish it before the deadline. These strategies save energy by 
putting into sleep modes idle servers. In GCSM, the model 
proposes that the more energy is consuming a node the more 
inefficient it is. Both heuristics set a threshold and if the 
consumption is above it the node will be discarded, the task 
will be only allocated on it if there is no other node that can 
complete the task before the deadline.  

In [23], the objective is to minimize the energy 
consumption and SLA violations. The SLA establishes the 
minimum MIPS, RAM and bandwidth. The energy saving is 
achieved through VM consolidation. The idle computational 
resources are putted into the sleep mode. VM migrations are 
done if the host utilization is above an upper threshold, if it is 
below a lower threshold (in this case, all the host’s VM are 
reallocated and the host is put into sleep mode), if a VM has 
an intensive communication with other VM located in a 
different host, and, lastly, if temperature exceeds a value. In 
[24], the authors present an improvement of this strategy, by 
taking into account the SLA violations related with MIPS. 

Few energy-aware strategies consider network 
characteristics. 

DENS – Data Center Energy-Efficient Network-Aware 
Scheduling, proposed in [14], optimizes the relation between 
jobs consolidation and traffic distribution (avoiding hot 
spots). It is used a lineal energy model and idle servers are 
putted into sleep mode to save energy.  

e-STAB [7] is very similar to DENS. They differ in how 
the traffic is analyzed. In e-STAB, the traffic can be balanced 
and the criteria to select servers are little different. In both 
works, the server with highest communication capacity and 
with more utilization is chosen to execute the task. 

HEROS – Energy-Efficient Load Balancing for 
Heterogeneous Data Centers, proposed in [15], is based on 
DENS and e-STAB. It is designed to work in a heterogeneous 
environment, at the contrary to DENS and e-STAB that work 
on a homogenous one. HEROS can be applied to topologies 
different to three-tier, which is not effective in DENS and e-
STAB. 

ACCURATE – Adaptive Computing and Communication 
Resource Allocation Scheme for Cloud Computing Data 
Centers proposed in [7] is similar to DENS and e-STAB but 
it can be configured and the score function takes into account 
another metric: energy proportionality factor. This factor 
represents how increase the power consumption with respect 
to load increase for any utilization level. The major 
contribution is to introduce a configurable scheduler that can 
be dynamically tuned for different types of workloads, and 
different interests: energy saving, SLA violations and data 
transmission distribution. 

IV. ADJUSTABLE SCHEDULER 

A. Infrastructure Model 
Let us consider a set of  identical tmachines. Each 

machine  is described by the tuple  where, 
 is the CPU load at time , and  

is the power at time . We suppose that power depends on 
CPU load at time  as CPU load is the most important factor 
to determine the energy consumption of a server [25]. 

 is a function that computes the power consumed 
in a time  based on CPU load. 
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The data center has a three-tier topology. It is modelled by 
a graph , where  is composed by the machines and 
switches, and  by the communication links.  is a set of 
switches. Every server can reach the gateway router through a 
set of paths . A path  is a non-repeated sequence of 
nodes that connects the machine  with . It is represented 
as follows , where  are 
the switches in access, aggregation and core layers 
respectively. All the path has the following tuple 

, where 

 is the power consumed at time 
 and is function of the load of  at time .  is 

the path’s load and it is computed as the rate of bits 
sent/received by the machine divided between the end-to-end 
transmission bandwidth of the path; the former is equal to the 
link with less effective bandwidth. The value of the path load 
is in the range from 0 to 1. Paths with low load are preferred 
for job allocation to maintain the network balanced. 

B. Job Model 
Every job is described by the tuple , where  

is the release time,  and  are the computational (MIPS) 
and communicational (Mbps) requirements, respectively. The 
last two define the requirements of the QoS to satisfy the SLA. 
The job description is fully known only when the job has been 
submitted. 

C. Energy Model 
The energy consumed to operate the IT equipment is  

and is computed as: 
   (1)
where  and  are the energy consumed by the servers 
and the switches respectively. Both values are computed for 
the time interval . 

IT devices have different power consumption profiles. To 
represent this diversity, we use the Energy Proportionality 
Coefficient (EPC) [26]. Each device  has an EPCi and it is 
computed as: 

  (2)

where  represents the deviation of the 
power function from the ideal curve having considered the 
load  to be normalized in the range [0,1]. 

D. Scheduling Criteria 
The objective is to minimize the energy consumption and 

SLA violations. This multiobjective problem is addressed 
using a weighted score function . This function has three 
criteria: instantaneous load of computing servers, paths load 
and EPC. Job  is allocated to the suitable machine  with the 
highest score. The machine  is selected from  set, which 
is the set of servers that have the available MIPS and 
bandwidth (Mbps) required by job . If no servers meet the 

requirements, then  is composed by the machine(s) with 
the highest available MIPS.  

The score function is computed for each server  as follow: 
  (3)
where:  and  are the computation and communication 
components. Both values are between 0 and 1. 

•  is a balancing coefficient that gives more 
importance to  or , . 

1) Computational equipment: The score due to 
computational equipment is computed as follows: 
   (4)
where: 

•  is the energy proportionality coefficient of the 
machine  

•  is a balancing coefficient that shows a relative 
importance between the two terms,  

•  is a function of the server load . It is based on 
DENS strategy. It is calculated as follows: 

,     (5)

where . The first part of the equation is increased 
with the workload. The second term, instead, makes the score 
decreasing with the increase of load. As a result, it prevents 
selection of overloaded servers during jobs consolidation. 
The parameter  allows fine tuning of the maximum server 
load defining overloaded servers. 

2) Communication component: For each server i we 
have: 

 

  
(6)

where: 
•  is the load of the path . 
•  is the overall energy proportionality of the 

path  and is computed as: 

 

where: 
 

The first term of  is a function of the load of the path 
from server i to the data center gateway and is based on [14]. 
The second term is the overall energy proportionality on that 
path. 

Fig. 2 [7] illustrates a possible example of scoring function 
 with . 
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Figure 2.  Example of score function  for . 

V. PERFORMANCE EVALUATION 

A. GreenCloud Simulator 
We evaluate the performance of strategies using the cloud 

computing data center simulator: GreenCloud [27]. This 
simulator is energy-aware and network-aware. It offers a 
detail model of the energy consumed by data center devices 
such as: computing servers, switches and communication 
links. It supports three-tier topology and implements DVFS 
[28] and DPM [29] to minimize the energy consumption of 
servers and switches. 

GreenCloud is an extension of the well-known packet-
level network simulator Ns2 [30], which considers TCP/IP 
protocols for packet transmission. Hence, communications are 
simulated in a more realistic way and this is what makes this 
simulator different from the others. 

B. Workload 
The types of workloads are characterized mainly by the 

computational and communicational components of jobs. 
The computational component defines the amount of 
computing that must be executed per second and it is given 
in MIPS. The communicational component indicates the size 
of data transfers that goes from data center gateway to the 
server (input communication) and from server to data center 
gateway (output communication).  

The three types of workloads that we use are 
computational-intensive, communication-intensive, and 
balanced. The first one requires a high amount of MIPS but 
almost no communication, the second one requires a low 
amount of MIPS but high degree of communications. The last 
one requires computation and communication in the same 
proportion. 

C. Performance evaluation methodology 
The scheduling problem we face is bi-objective, we want 

to minimize the energy consumption and SLA violations. In 
this section, we describe how to compare the strategies taking 
into account both criteria. 

First, we calculate the degradation in performance of each 
strategy for each metric. This is done relatively to the best 

performing strategy for the metric, as follows: 
. Next, we calculate the 

approximation of the Pareto front. 
When we have the approximated Pareto front for each 

strategy, the fronts are compared using the set cover metric 
[31] that calculates the proportion of solutions in B, which are 
dominated by solutions in A. 

 (7)

A metric value  means that all solutions of  
are dominated by at least one solution of , and  

 indicates that any solution of  is dominated by any 
solution of . This way, the larger , the better the 
Pareto front  with respect to . Since the dominance 
operator is not symmetric,  is not necessarily equal 
to , and both  and  have to be 
computed for understanding how many solutions of  are 
covered by  and vice versa. 

Based on  and , we calculate two ranks. 
In the first rank, all the strategies are ordered by their 
dominance with respect to the others Pareto fronts. In the 
second rank, all the strategies are ordered by how much they 
are dominated by the others Pareto fronts. As higher the first 
one and lower the second one the better is the strategy. This 
two ranks are combined to obtain the best strategy. 

D. Setup Parameters 
The considered data center architecture is a three-tier 

topology, with 1536 servers grouped in 64 racks, 16 
aggregation switches and 8 core switches. Links connecting 
servers to top of rack switches are 1 Gbps, and links between 
access network and aggregation network, and between 
aggregation network and core network are 10 Gbps. The data 
center load will be 50% of its capacity. 

1) Scheduler configurations: Each combination of  
is a configuration of the AS. 

The variations of  values are as follow: 
• 
• 
• 
When , the values of  do not affect the score 

function. The same happens with , when . So for 
 and , we have: 

• 
• 
This gives a total of  scheduling 

strategies that has to be compared. Due the execution cost of 
one solution and the amount of executions necessary to obtain 
valid statistical values, we limit the search to 110 
combinations. We run each strategy 30 times for computation-
intensive and communication-intensive workloads. This gives 
6600 executions . 

2) Performance Comparisson: We also compare it with 
Green scheduler, Round-Robin scheduler [14], and DENS. 
The first one is a greedy heuristics that allocates jobs to the 
most loaded server, it is an energy-efficient strategy. The 
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second one allocates jobs using round-robin method. It is a 
network-balanced strategy. 

VI. CONCLUSIONS 
In this paper, we introduce a model of adjustable 

scheduling strategy that can be configured to minimize energy 
consumption through job consolidation and, at the same time, 
to balance traffic loads of the data center. We describe the 
procedure of tuning AS for three types of workloads: 
computation-intensive, communication-intensive and 
balanced. We present its performance evaluation 
methodology. 
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