

C. Grelck et al. (Eds.): IFL 2004, LNCS 3474, pp. 1 – 16, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Exploiting Single-Assignment Properties to Optimize
Message-Passing Programs by Code Transformations

Alfredo Cristóbal-Salas1, Andrey Chernykh2, Edelmira Rodríguez-Alcantar3,
and Jean-Luc Gaudiot4 (*)

1 School of Chemistry Science and Engineering, Autonomous University of Baja California,
Tijuana, Baja California, Mexico, 22390

cristobal@uabc.mx
2 Computer Science Department, CICESE Research Center,

Ensenada, Baja California, Mexico, 22830
chernykh@cicese.mx

3 Computer Science; University of Sonora,Hermosillo, Sonora,
 Mexico, 83000

edelmira@mat.uson.mx
4 Electrical Engineering and Computer Science, University of California, Irvine,

Irvine, California, USA, 92697
gaudiot@uci.edu

Abstract. The message-passing paradigm is now widely accepted and used
mainly for inter-process communication in distributed memory parallel systems.
However, one of its disadvantages is the high cost associated with the data ex-
change. Therefore, in this paper, we describe a message-passing optimization
technique based on the exploitation of single-assignment and constant informa-
tion properties to reduce the number of communications. Similar to the more
general partial evaluation approach, technique evaluates local and remote mem-
ory operations when only part of the input is known or available; it further spe-
cializes the program with respect to the input data. It is applied to the programs,
which use a distributed single-assignment memory system. Experimental results
show a considerable speedup in programs running in computer systems with
slow interconnection networks. We also show that single assignment memory
systems can have better network latency tolerance and the overhead introduced
by its management can be hidden.

1 Introduction

The exchange of information remains as a critical bottleneck in distributed memory
systems. Exchanging information by message passing is a popular technique in dis-
tributed environment. Furthermore, with the proliferation of clusters and GRID tech-
nology, the message passing paradigm has significantly increased in popularity. How-
ever, its major drawback is the inherently high communication costs. Communication
cost depends on memory manipulation overhead (message preparation, message in-
terpretation) and network communication delays.

(*) Authors are listed in alphabetical order.

2 A. Cristóbal-Salas et al.

There are several strategies to minimize this cost such as computation and commu-
nication overlapping, network optimization, or reduction of number of messages
(message coalescing, caching messages, etc). Consequently, reducing this cost is vital
to achieve good performance.

In this paper we present how to reduce communication cost of parallel programs
for distributed memory systems. Technique eliminates synchronization issues by non-
strict data access and fully asynchronous operations. It also combines functional pro-
gramming techniques such: I-Structures [2] and partial evaluation [11] together with
classical program optimization like constant-propagation, loop unrolling and dead-
code elimination. As a contribution of this paper, we provide detailed description
about code transformations needed to partially evaluate memory accesses when part
of the program’s input information is available. We use single-assignment I-
Structures to facilitate asynchronous access when structure production and consump-
tion can be allowed to proceed with a looser synchronization. When a read operation
occurs before a write operation, the deferred request is queued on a linked list of that
particular I-Structure element. When the write operation finally occurs, the system re-
sponds to the deferred reads by distributing the written value to the requesters, which
have been received in the meantime.

On the other hand, partial evaluation [11,18] is an automatic program transforma-
tion technique which allows the partial execution of a program when only some of its
input data are available (static), and specializes it by pre-computing parts of the pro-
gram that depend on specific parameter settings. It has been shown in [9, 14] that the
majority of communications in scientific programs are static, that is, the communica-
tion information can be determined at compile time. Some experiments which show
how MPI parallel programs can be optimized by using static information can be found
in [20]. These characteristics can be exploited in message passing paradigm to elimi-
nate memory request at compile time. Elimination of memory accesses may improve
performance of parallel programs running in architectures with high latency intercon-
nection networks such as wide area networks or grids. Even though our technique
works directly with MPI as communication layer, it can be applied to other communi-
cation libraries.

The rest of the paper is organized as follows: in section 2 a general description of
proposed optimization technique is presented. In section 3, we provide detailed in-
formation how optimization technique works using an example of code transforma-
tion. Experimental results can be found in section 4. Related work is presented in sec-
tion 5. Finally, some conclusions are presented.

2 General Description of the Optimization Technique

In [8], this optimization technique is proposed. This technique is based on a particular
case of partial evaluation approach where parallel programs evaluation is performed
when only part of their input is given. It reduces the number of messages in single-
assignment distributed memory systems by exploiting constant information. For in-
stance, matrix multiplication can be evaluated when matrices size and number of

 Exploiting Single-Assignment Properties to Optimize Message-Passing Programs 3

processes are known, but with unknown matrices elements values. Obviously, pro-
gram evaluation cannot be completed but it is possible to create a residual program
(optimized one). When remaining input data become available, residual program can
continue evaluations. This residual program can be run as many times as needed, and
it is expected to be faster than executing the original program.

Fig. 1 shows a general view of this new technique. Parallel program code and a set
of constant values are given as an input. The output is a residual (optimized) code
where all constant memory accesses have been eliminated. Two main steps are con-
sidered: pre-processing and message elimination.

Fig. 1. General view of the optimization technique

In the preprocessing step, code is transformed to facilitate detection of static mem-
ory accesses. Main-body code is replicated in accordance with the number of proc-
esses given, constants are propagated, dead code is eliminated, and loops are unrolled.

In the message elimination step, static memory accesses are evaluated by inserting
a special instruction in the corresponding remote process code to locally perform the
remote request. After the evaluation of all static memory requests, a second review of
code is performed to complete execution of all requests that refer to elements already
defined. Before going into details, we review design of Distributed I-Structure mem-
ory system. More information about it can be found in [6, 7].

2.1 Distributed I-Structure Memory System (D-IS)

D-IS is a communication library for distributed memory systems that implements the
functionality of I-Structures [2] on top of MPI (Fig. 2). Each MPI process manages a
local I-Structure memory system arranged in a linked list. Remote operations are per-
formed using split-phase transactions and they are implemented using MPI point-to-
point routine calls. Exchange of information involves a send-request, receive-value on
the requester side and receive-request, and send-value on the side of the owner of the
I-Structure. D-IS permits consulting an I-Structure element even before a value is
bound to that memory location. This feature breaks the restrictions unnecessarily im-
posed by sequential systems, which demand the complete production of data before
consumption. The write policy is write-through to ensure data will be available as
soon it is produced. D-IS is a further research of the I-Structure memory system pre-
sented in [15]. As D-IS runs on top of MPI, it has most of its features such as portabil-

Pre-processing

1. Main-body code
duplication

2. Constant
propagation

3. Dead-code
elimination

4. Unroll loops
5. Constant

propagation

Message elimination

1. Request evaluation
2. Request-completion

evaluation.

Optimization technique

Code without
constant messages

Parallel code using
D-IS memory system

Constant
information

Pre-processing

1. Main-body code
duplication

2. Constant
propagation

3. Dead-code
elimination

4. Unroll loops
5. Constant

propagation

Message elimination

1. Request evaluation
2. Request-completion

evaluation.

Optimization technique

Pre-processing

1. Main-body code
duplication

2. Constant
propagation

3. Dead-code
elimination

4. Unroll loops
5. Constant

propagation

Pre-processing

1. Main-body code
duplication

2. Constant
propagation

3. Dead-code
elimination

4. Unroll loops
5. Constant

propagation

Message elimination

1. Request evaluation
2. Request-completion

evaluation.

Message elimination

1. Request evaluation
2. Request-completion

evaluation.

Optimization technique

Code without
constant messages
Code without
constant messages

Parallel code using
D-IS memory system

Constant
information

Parallel code using
D-IS memory system

Constant
information

4 A. Cristóbal-Salas et al.

ity and efficient implementation in several architectures. The D-IS memory system
has been tested in a NUMA S2MP ORIGIN 2000 and in a Pentium III cluster.

INTERCONNECTION NETWORK

CV

D
-I

S

MPI

…
Process i Process j

CV

D
-I

S

MPI

INTERCONNECTION NETWORK

CV

D
-I

S

MPI

CV

D
-I

S

CVCV

D
-I

S

MPI

…
Process i Process j

CV

D
-I

S

MPI

CV

D
-I

S

CVCV

D
-I

S

MPI

Fig. 2. Graphical representation of the D-IS

3 Functionality of Optimization Technique

Before presenting functionality of proposed technique, we first describe the syntax of
the main function routines.

3.1 Syntax of Instructions to Manipulate D-IS Memory System

D-IS has four general routines to initialize memory system and to obtain general in-
formation from the communicator:

• void DIS_Init(int argc, char **argv). Initializes the D-IS memory system.
argc and argv are parameters taken from the command line.

• void DIS_GetProcessRank(int *rank). Gets the rank of a process inside the
current communicator.

• void DIS_Finalize(). Finalizes the D-IS memory system and stops the execu-
tion of all MPI routines.

The D-IS memory system also has the following instructions

• int DIS_Request(int node, int id, int pos). It requests the element pos
of the I-Structure id to process node. Remote requests are stored in a list whose
index is attached to a MPI message as a continuation vector. This routine returns
the position of the request in the list.

• void DIS_RecvRequest(int node). This instruction is divided into three steps.
First, an MPI_Recv instruction is executed to receive a request. Secondly, local
D-IS is consulted to obtain information about the I-Structure element requested.
If the I-Structure element is in the “empty” or “deferred” state, then the request is
added to the end of the deferred-reads queue and no further action is taken. Fi-
nally, as soon the I-Structure element becomes available, the value is sent back to
the requester by using another MPI_Send call.

 Exploiting Single-Assignment Properties to Optimize Message-Passing Programs 5

• double DIS_RecvDatum(int index). An MPI_Recv instruction is executed to
receive a message from node. Index specifies the position from the list of remote
requests where the continuation vector is stored. This routine returns the value of
the I-Structure element requested.

• Void DIS_Write(int id, int pos, double value). This instruction stores a
value in the I-Structure id at position pos. If that element is in the “deferred”
state the value stored is copied to all continuation vectors and state is changed to
“full”; if element is in “empty” state the value is stored in that position and its
state is changed to “full”. If element is “full” state then the store operation cannot
be completed and it causes a fatal error.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

int main(int argc, char **argv){
-CODE-
if (rank==0){
 for (j=1; j<PROCS; j++)
 for (i=0; i<n; i++)
 index[i]=DIS_Request(j, ID, i);
 for (j=1; j<PROCS; j++)
 for (i=0; i<n; i++)
 data[i]=DIS_RecvDatum(index[i]);
 }
 else{
 for (i=0; i<n; i++)
 DIS_Write(ID, i, value[i]);
 for (i=0; i<n; i++)
 DIS_RecvRequest(0);
 }
-CODE-
}

Fig. 3. Original user code

3.2 Code Transformation Description Following an Example Code

An example of code transformation by exploiting constant information is presented
next. Fig. 3 shows the original user code to be optimized. In this code, process 0 sends
request for n elements to the rest of the processes in the communicator.

As constant input information, we provide the following parameters: PROCS=2,
n=3, ID=3. For rank=1 we define I-Structure elements such as: ID=3, element=0,
value=12.7 and ID=3, element=2, value=38.5

3.2.1 Main-Body Routine Code Duplication
In this step, the original main-body routine code is copied as many times as there are
specified processes. The main-body routine code is substituted for a switch-case in-
struction that selects the appropriate code for each process. The code for a particular
process is specified by the function main_process_X, where X is the rank number and
it is an exact copy of the original main-body code. In Fig. 4, we see how this code
transformation is done in the example code: a new main-body code is inserted (lines
1-12) and it contains a switch instruction where the variable rank has two possible op-
tions because it is intended to run with two processes. Also, two new functions have
been inserted in the code, main_process_0 (lines 14-32) and main_process_1 (lines
34-52), these functions specify the code for each process.

6 A. Cristóbal-Salas et al.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

Int main(int argc, char **argv){
DIS_Init(&argc,&argv);
DIS_GetProcessRank(&rank);
switch(rank) {
 case 0: main_process_0();
 break;
 case 1: main_process_1();
 break;
};
DIS_Finalize();
return 1;
}

int main_process_0(){
-CODE-
if (rank==0){
 for (j=1; j<PROCS; j++)
 for (i=0; i<n; i++)
 index[i]=DIS_Request(j, ID, i);
 for (j=1; j<PROCS; j++)
 for (i=0; i<n; i++)
 data[i]=DIS_RecvDatum(index[i]);
}
else{
 for (i=0; i<n; i++)
 DIS_Write(ID, i, value[i]);

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

for (i=0; i<n; i++)
 DIS_RecvRequest(0);
}
-CODE-
return 1 ;
}

int main_process_1(){
-CODE-
if (rank==0){
 for (j=1; j<PROCS; j++)
 for (i=0; i<n; i++)
 index[i]=DIS_Request(j, ID, i);
 for (j=1; j<PROCS; j++)
 for (i=0; i<n; i++)
 data[i]=DIS_RecvDatum(index[i]);
}
else{
 for (i=0; i<n; i++)
 DIS_Write(ID, i, value[i]);
 for (i=0; i<n; i++)
 DIS_RecvRequest(0);
}
-CODE-
Return 1 ;
}

Fig. 4. Main-body routine code duplication

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

Int main(int argc, char **argv){
DIS_Init(&argc,&argv);
DIS_GetProcessRank(&rank);
switch(rank) {
 case 0: main_process_0();
 break;
 case 1: main_process_1();
 break;
};
DIS_Finalize();
return 1;
}

int main_process_0(){
-CODE-
if (0==0){
for (j=1; j<2; j++)
 for (i=0; i<3; i++)
 index[i]=DIS_Request(j, 3, i);
 for (j=1; j<2; j++)
 for (i=0; i<3; i++)
 data[i]=DIS_RecvDatum(index[i]);
 }
 else{
 for (i=0; i<3; i++)
 DIS_Write(3, i, value[i]);

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

for (i=0; i<3; i++)
 DIS_RecvRequest(0);
}
-CODE-
return 1;
}

int main_process_1(){
-CODE-
if (1==0){
 for (j=1; j<2; j++)
 for (i=0; i<3; i++)
 index[i]=DIS_Request(j, 3, i);
 for (j=1; j<2; j++)
 for (i=0; i<3; i++)
 data[i]=DIS_RecvDatum(index[i]);
}
else{
 for (i=0; i<3; i++)
 DIS_Write(3, i, value[i]);
 for (i=0; i<3; i++)
 DIS_RecvRequest(0);
 }
-CODE-
return 1;
}

Fig. 5. Constant propagation to identify static loops

3.2.2 Constant Propagation
In this step, we propagate constant information throughout the code to detect any pos-
sible static loop. In the example (see Fig. 5 for details), we propagate for rank=0 the
constants PROCS=2, n=3, ID=3 and for rank=1 we propagate: PROCS=2, n=3, ID=3.

3.2.3 Dead-Code Elimination
Instructions that will never be processed by a particular process are eliminated in this
step (see Fig. 6 for resulting code); for instance, conditional expressions depending on
the rank value. In the example, from Fig. 5, we see that lines 24-29 in function

 Exploiting Single-Assignment Properties to Optimize Message-Passing Programs 7

main_process_0 will never be executed by process 0; the same happens in function
main_process_1 where lines 36-43 will never be processed by process 1.

3.2.4 Unrolling Loops
All loops involving memory accesses are unrolled to detect possible static instructions
inside loops. In the example code (Fig. 6), there are six loops that can be unrolled
(lines 14, 15, 17, 18, 26, and 28). Fig. 7 shows the code after the loops have been un-
rolled.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

int main(int argc, char **argv){
DIS_Init(&argc,&argv);
DIS_GetProcessRank(&rank);
switch(rank) {
 case 0: main_process_0(); break;
 case 1: main_process_1(); break;
};
DIS_Finalize();
return 1;
}

int main_process_0(){
-CODE-
for (j=1; j<2; j++)
 for (i=0; i<3; i++)
 index[i]=DIS_Request(j, 3, i);

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

for (j=1; j<2; j++)
 for (i=0; i<3; i++)
 data[i]=DIS_RecvDatum(index[i]);
-CODE-
return 1;
}

int main_process_1(){
-CODE-
for (i=0; i<3; i++)
 DIS_Write(3, i, value[i]);
for (i=0; i<3; i++)
 DIS_RecvRequest(0);
-CODE-
return 1;
}

Fig. 6. Code after dead-code elimination

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

int main(int argc, char **argv){
DIS_Init(&argc,&argv);
DIS_GetProcessRank(&rank);
switch(rank) {
 case 0: main_process_0();
 break;
 case 1: main_process_1();
 break;
};
DIS_Finalize();
return 1;
}

int main_process_0(){
-CODE-
index[0]=DIS_Request(1, 3, 0);
index[1]=DIS_Request(1, 3, 1);
index[2]=DIS_Request(1, 3, 2);

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

data[0]=DIS_RecvDatum(index[0]);
data[1]=DIS_RecvDatum(index[1]);
data[2]=DIS_RecvDatum(index[2]);
-CODE-
return 1;
}

int main_process_1(){
-CODE-
DIS_Write(3, 0, value[0]);
DIS_Write(3, 1, value[1]);
DIS_Write(3, 2, value[2]);
DIS_RecvRequest(0);
DIS_RecvRequest(0);
DIS_RecvRequest(0);
-CODE-
return 1;
}

Fig. 7. Unroll loops inside each local_main functions

3.2.5 Final Constant Propagation
We propagate constants throughout the code to reach variables inside the loops that
may not be processed during first propagation. In Fig. 8, we show the code after
propagation; lines 28 and 30 have been modified specifying the values to be stored in
the I-Structure 3 positions 0 and 2.

3.2.6 Constant Requests Evaluation for Remote I-Structure Elements
This step detects static memory accesses and eliminates them. Each constant request
is erased from the code and a DIS_RemoteRequest() function is inserted instead in the
main_process_X() function of the remote process code.

8 A. Cristóbal-Salas et al.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

int main(int argc, char **argv){
DIS_Init(&argc,&argv);
DIS_GetProcessRank(&rank);
switch(rank) {
 case 0: main_process_0();
 break;
 case 1: main_process_1();
 break;
};
DIS_Finalize();
return 1;
}

int main_process_0(){
-CODE-
index[0]=DIS_Request(1, 3, 0);
index[1]=DIS_Request(1, 3, 1);
index[2]=DIS_Request(1, 3, 2);

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

Data[0]=DIS_RecvDatum(index[0]);
data[1]=DIS_RecvDatum(index[1]);
data[2]=DIS_RecvDatum(index[2]);
-CODE-
return 1;
}

int main_process_1(){
-CODE-
DIS_Write(3, 0, 12.7);
DIS_Write(3, 1, value[1]);
DIS_Write(3, 2, 38.5);
DIS_RecvRequest(0);
DIS_RecvRequest(0);
DIS_RecvRequest(0);
-CODE-
return 1;
}

Fig. 8. Code after constant propagation

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

int main(int argc, char **argv){
 DIS_Init(&argc,&argv);
 DIS_GetProcessRank(&rank);
 switch(rank) {
 case 0: main_process_0();
 break;
 case 1: main_process_1();
 break;
 };
 DIS_Finalize();
 return 1;
}

int main_process_0(){
 -CODE-
 data[0]=DIS_RecvDatum(index[0]);
 data[1]=DIS_RecvDatum(index[1]);

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

 data[2]=DIS_RecvDatum(index[2]);
 -CODE-
 return 1;
}

int main_process_1(){
 -CODE-
 base=0;
 DIS_Write(3, 0, 12.7);
 DIS_Write(3, 1, value[1]);
 DIS_Write(3, 2, 38.5);
 DIS_RemoteRequest(0,3,0,base+0);
 DIS_RemoteRequest(0,3,1,base+1);
 DIS_RemoteRequest(0,3,2,base+2);
 base=3;
 -CODE-
 return 1;
}

Fig. 9. Static messages evaluation by inserting DIS_RemoteRequest()functions in the data-
owner (process that stores data) text code

The introduction of the DIS_RemoteRequest() functions insert in local I-Structure
elements a remote deferred read. From Fig. 8, lines 16-18 are constant requests and
can be transformed into DIS_RemoteRequest() functions as can be seen in Fig. 9 in
lines 30-32. Base is a variable that adjusts index when loops involving memory re-
quests cannot be unrolled.

3.2.7 Constant Remote Request Completion
In this step, each main_process_X()function is analyzed to check if any of the
DIS_RemoteRequest()functions refers to an I-Structure element already defined by a
DIS_Write() function. If so, there is no need to wait until execution time to complete
this evaluation, it can be evaluated during this optimization step. Then, the corre-
sponding DIS_RecvDatum()function can be deleted and substituted by the constant
value already defined. From Fig. 9, lines 30 and 32 refer to an I-Structure element al-
ready defined in lines 27 and 29 respectively.

Therefore, lines 30 and 32 (Fig. 9) can be evaluated by copying values 12.7 and
38.5 into the main_process_0() code as is shown in Fig. 10, lines 17 and 19.

 Exploiting Single-Assignment Properties to Optimize Message-Passing Programs 9

In this section, we have shown above how to partially evaluate remote memory re-
quests by exploiting the I-Structures’ features and constant propagation prior to the
execution of the parallel program. In this particular data independent example, three
of the messages needed to perform remote memory requests can be fully evaluated
while 2/3 of the messages that answer remote requests can be also fully evaluated.
Hence, from six messages that were required to be evaluated at execution time, five of
them were evaluated during the optimization technique.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

int main(int argc, char **argv){
 DIS_Init(&argc,&argv);
 DIS_GetProcessRank(&rank);
 switch(rank) {
 case 0: main_process_0();
 break;
 case 1: main_process_1();
 break;
 };
 DIS_Finalize();
 return 1;
}

int main_process_0(){
 -CODE-
 data[0]=12.7;

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

 data[1]=DIS_RecvDatum(index[1]);
 data[2]=38.5;
 -CODE-
 return 1;
}

int main_process_1(){
 base=0;
 -CODE-
 DIS_Write(3, 0, 12.7);
 DIS_Write(3, 1, value[1]);
 DIS_Write(3, 2, 38.5);
 DIS_RemoteRequest(0,3,1,base+1);
 base=3;
 -CODE-
 return 1;
}

Fig. 10. Constant information in remote node is transferred to the requester

4 Experimental Results

This optimization technique has been tested with several algorithms such as matrix
multiplication, conjugate gradient, and fast Fourier transform [7, 8] running in a SGI
Origin 2000 with 10 MIPS R10000 processors and a PC Cluster with 8 Pentium III
processors. In this section, we show experimental results for a 4 Dual-Pentium III PC
Cluster in a 10/100 Fast Ethernet point-to-point interconnection and 512 MB of mem-
ory in each node. Programs presented in the section use no collective communication,
cache mechanism, message coalescing, or data locality exploitation. These restrictions
are set just to observe how much performance can be obtained just by the partial
evaluation technique alone.

We present experimental results using the 2D Haar wavelet transform (2D-HWT)
applied to a 1024x1024 image. The Haar wavelet transform is the first known wave-
let, proposed in 1909 by Alfred Haar [17]. The Haar wavelet is also the simplest pos-
sible wavelet. As opposed to the functions sine and cosine used for Fourier trans-
forms, a wavelet not only has locality in the frequency domain but also in the time or
spatial domain. The algorithm produces as output a file containing the average of
original image together with the detail information of the same image.

We chose 2D-HWT because it is a data independent algorithm. This feature makes
it well suitable to show the advantages of our optimization technique. With this
benchmark program, we intend to demonstrate how parallel programs can benefit
when part of the input information is constant. In benchmark program, we assume that
different percentages of the input image are known. This assumption is reasonable in
digital image processing where images may contain a constant background or fixed

10 A. Cristóbal-Salas et al.

objects. In experiments, we run the program that implements 2D-HWT and use D-IS
memory system.

We show results for different percentages of the image, network latencies, and
number of processing elements (PEs). We define the following notation:

DIS - Refers to the original program without any optimization.
DIS(p) - Refers to the optimized program running when p percentage of the image

is known. When zero percentage of the image is known, technique can still be per-
formed because the sending of requests can be evaluated if image size is provided.

0

100

200

300

400

500

600

2 PEs 4 PEs 8 PEs

T
h

o
u

sa
n

d
s

N
u

m
b

er
 o

f
M

es
sa

g
es

DIS DIS(0) DIS(5) DIS(20)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

 DIS(0) DIS(5) DIS(20)

R
ed

u
ct

io
n

 R
at

e

Fig. 11. Number of messages sent varying the
number of processing elements and the per-
centage of the image that is known

Fig. 12. Reduction in the message rate
when part of the image (0%, 5%, and 20%)
is known

4.1 Number of Messages Analysis

Fig. 11 shows how the number of messages sent by optimized and non-optimized
programs varies with respect to the number of PEs. Comparing DIS and DIS(0) from
this figure, we can see that optimization technique can eliminate half of the messages
just by knowing the image dimension and the number of processing elements avail-
able. Under these circumstances memory requests can be sent even without knowing
the value of any pixels of the image.

These instructions represent half of the messages to send; the other half is required
to send the value of elements when they become available.

We also see that the number of messages is reduced when the number of processing
elements increases; this is an effect of parallelization and data distribution. Compar-
ing DIS(0), DIS(5) and DIS(20); we also see the impact of the technique when part of
the image is known. In this case, not only the requests can be performed which is the
case between DIS and DIS(0), but also some requests can be answered, thereby elimi-
nating more messages, as seen in Fig. 11.

These results are confirmed in Fig. 12, which shows the reduction in the rate of
message. This measurement is the ratio between the number of messages sent by the
DIS program over the number of messages sent by the DIS(k) programs. As seen in
the figure, this ratio is at least two and increases when part of the image is known.
This happens for 2, 4, and 8 PEs.

 Exploiting Single-Assignment Properties to Optimize Message-Passing Programs 11

4.2 Execution Time Reduction Analysis

Fig. 13 shows the execution time reduction rate obtained with DIS program varying
the percentage of constant information, number of PEs and the interconnection net-
work latency. Execution time reduction rate is the ratio between DIS execution time
over DIS(k) execution time. From this figure, we see the impact of the technique with
different interconnection network latencies.

0

1

2

3

4

5

6

1 PE 2 PEs 4 PEs 8 PEs

E
xe

cu
ti

o
n

 T
im

e
R

ed
u

ct
io

n
 R

at
e

 DIS(0) DIS(5) DIS(20)

(a)

0.0

0.5

1.0

1.5

2.0

2.5

1 PE 2 PEs 4 PEs 8 PEs

S
p

ee
d

u
p

DIS DIS(0) DIS(5) DIS(20)

(a)

0

1

2

3

4

5

6

1 PE 2 PEs 4 PEs 8 PEs

E
xe

cu
tio

n
 T

im
e

R
ed

u
ct

io
n

 R
at

e

 DIS(0) DIS(5) DIS(20)

(b)

0.0

0.5

1.0

1.5

2.0

2.5

1 PE 2 PEs 4 PEs 8 PEs

S
p

ee
d

u
p

DIS DIS(0) DIS(5) DIS(20)

(b)

0

1

2

3

4

5

6

1 PE 2 PEs 4 PEs 8 PEs

E
xe

cu
tio

n
 T

im
e

R
ed

u
ct

io
n

 R
at

e

 DIS(0) DIS(5) DIS(20)

(c)

0.0

0.5

1.0

1.5

2.0

2.5

1 PE 2 PEs 4 PEs 8 PEs

S
p

ee
d

u
p

DIS DIS(0) DIS(5) DIS(20)

(c)

Fig. 13. Execution time reduction rate vary-
ing the number of PEs, the percentage of
constant information and the interconnection
network speed. We analyze (a) twice faster
(b) original and (c) twice slower network
speeds

Fig. 14. Speedup of DIS, DIS(0), DIS(5),
DIS(20) programs with different numbers of
PEs. We present data for (a) twice faster (b)
original and (c) twice slower interconnection
network

12 A. Cristóbal-Salas et al.

In Fig. 13a, the interconnection network is twice faster than network in Fig. 13b and
four times faster than in Fig. 13c; while the network in Fig. 13b is twice faster than
the network in Fig. 13c. Hence, from this figure we see that the reduction rate is
higher when the interconnection network is slower. This means that technique makes
single assignment memory system more robust and latency tolerant.

We also see that there is almost no optimization possible when there is just one PE
because technique gets its real advantage from remote memory operations instead of
local memory operations. Also, when we increase the percentage of constant input in-
formation from 0, 5, and 20, there is a small increment in the reduction ratio because a
second message is eliminated; however, the processing of that message is not so time-
consuming when compared with the time spent by sending and receiving requests.
Moreover, optimization is reduced when the number of PEs is increased. This is due
to the data distribution between PEs; in other words, when more PEs are added, then
more messages are required to exchange information.

This effect does not mean that the optimized program runs slower; this only means
that the original program execution time and the execution time of its optimized ver-
sion are becoming similar.

4.3 Speedup

Fig. 14 shows the speedup obtained by benchmark programs when increasing the
number of PEs and varying the interconnection network speed by a factor of two. We
compare the time spent by parallel programs running in several PEs with respect to
the same parallel implementation running in a single PE.

Fig. 14a, 14b, and 14c show that DIS programs have a speedup below one which
means that programs with more than one PE run slower than their sequential counter-
part. This is due to the exchange of messages, which are time consuming; however,
with the introduction of more PEs, the program begins speeding up. When the inter-
connection network is fast enough, the speedup becomes higher than one (see Fig. 14a
DIS with 8 PEs). However, when the technique is applied to DIS program even with-
out any image values, which is the case of DIS(0), we note a positive speedup. This
tendency is also valid for DIS(5) and DIS(20) execution times.

In these cases, the overhead introduced by the management of I-Structures and the
communication times can be masked by the technique, producing a faster optimized
code. DIS(0), DIS(5), and DIS(20) display a similar speedup because the execution
time is similar in these cases.

5 Related Work

In this section we review related work in the area of parallel program optimization.
We analyze optimizations performed to the communication library (MPI) in software
and hardware also we review optimizations performed at compiled time which ex-
ploits static information about network or communication patterns.

 Exploiting Single-Assignment Properties to Optimize Message-Passing Programs 13

5.1 Optimization of Inter-Process Communication

Optimizations of the MPI barrier operation are discussed in [19]. Moh et al propose a
fast tree-based barrier synchronization scheme for 2-D meshes producing a reduction
in the number of messages by combining the synchronization messages.

In [4], a design and implementation of the MPI collective communication instruc-
tions optimized for clusters of workstations is presented. The system consists of two
main components: the MPI-CCL layer and a User-Level Reliable Transport Protocol
(URTP). The MPI-CCL layer includes the collective communication functionality of
MPI and the URTP works as an interface with the LAN Data-Link Layer. Their sys-
tem is integrated with the operative system through a kernel extension mechanism.
These operations reduce significantly the number of messages during the execution of
a MPI program. However, the correct utilization of these instructions depends on the
ability of programmer.

In [10], a prototype of the D-OSC, a SISAL compiler for distributed memory ma-
chines is presented. D-OSC is a further research of the Optimizing SISAL Compiler
(OSC) [16]. D-OSC generates C code with MPI calls. In D-OSC, messages are elimi-
nated using rectangular arrays, multiple-alignment, and block messages.

In [13], a library of collective communication operations, called MAGPIE, is pre-
sented. MAGPIE is optimized for wide area systems and its algorithms are designed
to send the minimal amount of data over the slow wide area links, and to only incur
singlewide area latency. MAGPIE implements the complete set of collective opera-
tions according to the MPI standard. Reduction operations with short data vectors are
frequently used in parallel applications. The paper also discusses optimizations such
as message vectorization, message coalescing, and redundancy elimination imple-
mented in MAGPIE.

5.2 Optimizations at Compile-Time

Single assignment is a fundamental property of variables in functional languages.
When a variable is only assigned to a value once, then an instance of that variable is
thereafter semantically equivalent to the value. The single assignment property is used
in compilers to implement a variety of optimizations [5]. One of the most attractive
features of single-assignment in parallel systems is that cache coherence is already
embedded in it [15].

The PARADIGM compiler [3], provides an automated mean to parallelize sequen-
tial programs for their efficient execution on distributed-memory multi-computers.
PARADIGM performs a number of optimizations: automatic data partitioning and
distribution, synthesis of high-level communication, and communication optimiza-
tion. These are provided through a generic library interface (MPI is included). Regu-
lar computations are optimized by message coalescing, message vectorization, coarse
grain pipelining, and message aggregation. It also supports functional, data parallel-
ism, and multithreaded execution.

In [1], a compiler algorithm that automatically finds computation- and data-
decompositions is presented. This algorithm optimizes both parallelism and data lo-
cality. Also, a mathematical framework to systematically derive decompositions is in-
troduced. An optimization algorithm focuses on programs with nesting of parallel and

14 A. Cristóbal-Salas et al.

sequential loops. The algorithm attempts to uncover a static decomposition that ex-
ploits the maximum degree of parallelism available in the program to minimize com-
munication, such that there is no reorganization or pipeline communication. It can ex-
ploit parallelism in both fully parallelizable loops as well as loops that require explicit
synchronization. If communication is needed, the algorithm will attempt to introduce
the least expensive forms of communication into those parts of the program that are
least frequently executed.

Another optimization technique performed at compile-time and applied to mes-
sage-passing parallel programs is Compiled Communication (CC) [21]. In CC, the
compiler determines the communication requirements in a program and manages net-
work resources, such as multicast groups and buffer memory, statically using the
knowledge of both the underlying network architecture and the application communi-
cation requirement. In this technique, the compiler analyzes the program and parti-
tions it into phases. Each phase has a fixed communication pattern and the compiler
inserts code to reconfigure the network at the end of each phase to manage network
resources directly. CC can eliminate runtime communication overhead produced by
group management. CC can also use prolonged connections for communications and
amortize the startup overhead over a number of messages. However, CC cannot be
applied to communications where information is not available at compile time. In
other words, the programming style influences the effectiveness of the CC technique.
Recently, CC has been proposed to improve the performance of MPI routines for
clusters of workstations, and an MPI prototype called CC-MPI [12] has been de-
signed. The CC-MPI supports compiled communication on Ethernet switched clus-
ters. It allows the user to manage network resources such as multicast groups directly
and to optimize communications based on the availability of the communication in-
formation. The CC-MPI optimizes one-to-all, one-to-many, all-to-all, and many-to-
many collective communication routines using the CC technique.

6 Conclusions

In this paper, we have provided detailed information about how to perform code ma-
nipulations in order to optimize parallel programs by exploiting static information.
This technique eliminates messages if the input data of MPI_Send() and MPI_Recv()
routines are known. We show that code transformations can be considered as efficient
optimization tool and they can be done by a partial evaluator using D-IS memory sys-
tem. We have shown that partial evaluation can be extended to a wider class of pro-
gram paradigms, and efficiently applied to distributed-applications, reducing the
number of the most time-consuming operations in addition to the known optimiza-
tions of sequential programs. In some applications with a partially given input, the
number of remote memory requests can be decreased dramatically by evaluating
ready-to-execute MPI_Send() and MPI_Recv() routines. Traffic in the interconnection
network and the network latency is also reduced and it makes the system more scal-
able especially with slow interconnection media.

Technique also improves design process avoiding hand-made optimization and ex-
ploiting features of parallel system automatically. Technique may also increase code
and memory consumption while improving efficiency; however, the same occurs with

 Exploiting Single-Assignment Properties to Optimize Message-Passing Programs 15

traditional partial evaluation technique. The regulation of extra code inserted is made
by limitation of unfolding or depth of recursion, or loop unrolling, etc. automatically
or with human interaction during partial evaluation step. Moreover, code that handles
transactions (send/receive routines) could grow with less speed than specialized code
for each processor. In any case, elimination of the messages is much more time saving
than time increasing by code growing.

Acknowledgements. The authors are pleased to acknowledge the anonymous referees
whose valuable remarks and comments helped improve the paper. This work is sup-
ported in part by the UC-Mexus under 2003-2004 post doctorate program, by UABC
under grant #371, by SEP-PROMEP under grant #PTC-UABC-16, by the NSF under
Grants #CCR-0234444 and INT-0223647, and by CONACYT under grant #32989.
Any opinions, findings, conclusions, or recommendations expressed in this material
are those of the authors and do not necessarily reflect the views of the UC-Mexus,
UABC, SEP, NSF, or of CONACYT.

References

1. Amarasinghe S-P and Lam M-S. Communication optimization and code generation for
distributed memory machines. In Proceedings of the SIGPLAN '93 Conference on Pro-
gramming Language Design and Implementation. 1993.

2. Arvind, Nikhil R-S, Pingali K-K. I-Structures: Data Structures for Parallel Computing.
ACM Transaction on PLS, Vol. 11 No. 4 pp. 598-632. 1989.

3. Banerjee P., Chandy J-A, Gupta M., Holm J-G, Lain A, Palermo D-J, Ramaswamy S., Su
E. The PARADIGM compiler for distributed-memory message multicomputers. In pro-
ceedings of the first international workshop on parallel processing. 1994.

4. Bruck J., Dolev D., Ho C-T, Roşu M-C, Strong R. Efficient Message-passing Interface
(MPI) for Parallel Computing on Clusters of Workstations. Journal of Parallel and Distrib-
uted Computing, Vol. 40 No. 1 pp. 19-34. 1997.

5. Champeaux D., Lea D., and Faure P. Object-Oriented System Development. Addison
Wesley, ISBN 0-201-56355-X. 1993.

6. Cristóbal-Salas A, and Tchernykh A. I-Structure Software Cache for distributed applica-
tions. Dyna, Year 71, No. 141. pp. 67 – 74. Medellín, March 2004. ISSN 0012-7353. 2004

7. Cristóbal-Salas A., Tchernykh A., Gaudiot J-L., Lin WY. Non-Strict Execution in Parallel
and Distributed Computing, International Journal of Parallel Programming, Kluwer Aca-
demic Publishers, New York, U.S.A., Vol. 31, 2, p. 77-105. 2003.

8. Cristóbal-Salas A., Tchernykh A., Gaudiot J-L. Incomplete Information Processing for
Optimization of Distributed Applications. Proceedings of the Fourth ACIS International
Conference on Software Engineering, Artificial Intelligence, Networking, and Paral-
lel/Distributed Computing (SNPD'03), ACIS, pp. 277-284, 2003.

9. Faraj A-A. Communication characteristics in the NAS parallel benchmarks. Master thesis,
college of arts and sciences, Florida State University. October 2002.

10. Garza-Salazar D-A, Bohm W. D-OSC: A sisal compiler for distributed memory machines.
In proceedings of the International Workshop on PCS. 1997.

11. Jones, N-D. An introduction to Partial Evaluation. ACM computing surveys, Vol. 28, No.
3. 1996.

16 A. Cristóbal-Salas et al.

12. Karwande A., Yuan X., and Lowenthal D-K. CC-MPI: A Compiled Communication Ca-
pable MPI Prototype for Ethernet Switched Clusters. ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (PPoPP), pp. 95-106. 2003.

13. Kielmann T., Hofman F-H, Bal H-E, Plaat A., and Bhoedjang A-F. MagPIe: MPI's Collec-
tive Communication Operations for Clustered Wide Area Systems, 7th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (PPOPP'99). 1999.

14. Lahaut D. and Germain C. Static Communications in Parallel Scientic Programs. In
PARLE'94, Parallel Architec-ture & Languages, LNCS 817, pp. 262-276. 1994.

15. Lin W-Y, and Gaudiot J-L. 1996. I-Structure Software Cache - A split-Phase Transaction
runtime cache system, Proceedings of PACT ’96 Boston, MA. 1996.

16. McGraw J., Skedzielewski S., Allan S., Grit D., Oldehoeft R., Glauert J., Dobes I., and
Hohensee P. SISAL-Streams and Iterations in a Single Assignment Language, Language
Reference Manual, version 1. 2. Technical Report TR M-146, University of California -
Lawrence Livermore Laboratory. 1985.

17. Mikulic Emil. Haar wavelet transform. http://dmr.ath.cx/gfx/haar/index.html. 2004.
18. Mogensen and P Sestoft. Partial evaluation. In A. Kent and J.G. Williams, editors, Ency-

clopedia of Computer Science and Technology, Vol. 37, pp. 247-279. 1997.
19. Moh S., Yu C., Lee B., Youn H-Y, Han D., Lee D. 4-ary Tree-Based Barrier Synchroniza-

tion for 2-D Meshes without Nonmember Involvement. IEEE Transactions on Computers,
Vol. 50, No. 8. 2001.

20. Ogawa H., Matsuoka S. OMPI: Optimizing MPI programs using Partial Evaluation. Pro-
ceedings of the 1996 IEEE/ACM Supercomputing Conference, Pittsburgh. 1996.

21. Yuan X., Melhem R. and Gupta R., Algorithms for Supporting Compiled Communication.
IEEE Transactions on Parallel and Distributed Systems, Vol. 14, No. 2, pp. 107-118. 2003.

