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Abstract. The message-passing paradigm is now widely accepted and used 
mainly for inter-process communication in distributed memory parallel systems. 
However, one of its disadvantages is the high cost associated with the data ex-
change. Therefore, in this paper, we describe a message-passing optimization 
technique based on the exploitation of single-assignment and constant informa-
tion properties to reduce the number of communications. Similar to the more 
general partial evaluation approach, technique evaluates local and remote mem-
ory operations when only part of the input is known or available; it further spe-
cializes the program with respect to the input data. It is applied to the programs, 
which use a distributed single-assignment memory system. Experimental results 
show a considerable speedup in programs running in computer systems with 
slow interconnection networks. We also show that single assignment memory 
systems can have better network latency tolerance and the overhead introduced 
by its management can be hidden. 

1 Introduction 

The exchange of information remains as a critical bottleneck in distributed memory 
systems. Exchanging information by message passing is a popular technique in dis-
tributed environment. Furthermore, with the proliferation of clusters and GRID tech-
nology, the message passing paradigm has significantly increased in popularity. How-
ever, its major drawback is the inherently high communication costs. Communication 
cost depends on memory manipulation overhead (message preparation, message in-
terpretation) and network communication delays. 
_______________________________ 
(*)  Authors are listed in alphabetical order. 
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There are several strategies to minimize this cost such as computation and commu-
nication overlapping, network optimization, or reduction of number of messages 
(message coalescing, caching messages, etc). Consequently, reducing this cost is vital 
to achieve good performance.  

In this paper we present how to reduce communication cost of parallel programs 
for distributed memory systems. Technique eliminates synchronization issues by non-
strict data access and fully asynchronous operations. It also combines functional pro-
gramming techniques such: I-Structures [2] and partial evaluation [11] together with 
classical program optimization like constant-propagation, loop unrolling and dead-
code elimination. As a contribution of this paper, we provide detailed description 
about code transformations needed to partially evaluate memory accesses when part 
of the program’s input information is available. We use single-assignment I-
Structures to facilitate asynchronous access when structure production and consump-
tion can be allowed to proceed with a looser synchronization. When a read operation 
occurs before a write operation, the deferred request is queued on a linked list of that 
particular I-Structure element. When the write operation finally occurs, the system re-
sponds to the deferred reads by distributing the written value to the requesters, which 
have been received in the meantime.  

On the other hand, partial evaluation [11,18] is an automatic program transforma-
tion technique which allows the partial execution of a program when only some of its 
input data are available (static), and specializes it by pre-computing parts of the pro-
gram that depend on specific parameter settings. It has been shown in [9, 14] that the 
majority of communications in scientific programs are static, that is, the communica-
tion information can be determined at compile time. Some experiments which show 
how MPI parallel programs can be optimized by using static information can be found 
in [20]. These characteristics can be exploited in message passing paradigm to elimi-
nate memory request at compile time. Elimination of memory accesses may improve 
performance of parallel programs running in architectures with high latency intercon-
nection networks such as wide area networks or grids. Even though our technique 
works directly with MPI as communication layer, it can be applied to other communi-
cation libraries.  

The rest of the paper is organized as follows: in section 2 a general description of 
proposed optimization technique is presented. In section 3, we provide detailed in-
formation how optimization technique works using an example of code transforma-
tion. Experimental results can be found in section 4. Related work is presented in sec-
tion 5. Finally, some conclusions are presented.  

2 General Description of the Optimization Technique 

In [8], this optimization technique is proposed. This technique is based on a particular 
case of partial evaluation approach where parallel programs evaluation is performed 
when only part of their input is given. It reduces the number of messages in single-
assignment distributed memory systems by exploiting constant information. For in-
stance, matrix multiplication can be evaluated when matrices size and number of 



 Exploiting Single-Assignment Properties to Optimize Message-Passing Programs 3 

 

processes are known, but with unknown matrices elements values. Obviously, pro-
gram evaluation cannot be completed but it is possible to create a residual program 
(optimized one). When remaining input data become available, residual program can 
continue evaluations. This residual program can be run as many times as needed, and 
it is expected to be faster than executing the original program.  

Fig. 1 shows a general view of this new technique. Parallel program code and a set 
of constant values are given as an input. The output is a residual (optimized) code 
where all constant memory accesses have been eliminated. Two main steps are con-
sidered: pre-processing and message elimination. 

 

Fig. 1. General view of the optimization technique 

In the preprocessing step, code is transformed to facilitate detection of static mem-
ory accesses. Main-body code is replicated in accordance with the number of proc-
esses given, constants are propagated, dead code is eliminated, and loops are unrolled. 

In the message elimination step, static memory accesses are evaluated by inserting 
a special instruction in the corresponding remote process code to locally perform the 
remote request. After the evaluation of all static memory requests, a second review of 
code is performed to complete execution of all requests that refer to elements already 
defined. Before going into details, we review design of Distributed I-Structure mem-
ory system. More information about it can be found in [6, 7]. 

2.1 Distributed I-Structure Memory System (D-IS) 

D-IS is a communication library for distributed memory systems that implements the 
functionality of I-Structures [2] on top of MPI (Fig. 2). Each MPI process manages a 
local I-Structure memory system arranged in a linked list. Remote operations are per-
formed using split-phase transactions and they are implemented using MPI point-to-
point routine calls. Exchange of information involves a send-request, receive-value on 
the requester side and receive-request, and send-value on the side of the owner of the 
I-Structure. D-IS permits consulting an I-Structure element even before a value is 
bound to that memory location. This feature breaks the restrictions unnecessarily im-
posed by sequential systems, which demand the complete production of data before 
consumption. The write policy is write-through to ensure data will be available as 
soon it is produced. D-IS is a further research of the I-Structure memory system pre-
sented in [15]. As D-IS runs on top of MPI, it has most of its features such as portabil-
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ity and efficient implementation in several architectures. The D-IS memory system 
has been tested in a NUMA S2MP ORIGIN 2000 and in a Pentium III cluster.  
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Fig. 2. Graphical representation of the D-IS 

3 Functionality of Optimization Technique  

Before presenting functionality of proposed technique, we first describe the syntax of 
the main function routines. 

3.1 Syntax of Instructions to Manipulate D-IS Memory System 

D-IS has four general routines to initialize memory system and to obtain general in-
formation from the communicator: 

• void DIS_Init(int argc, char **argv). Initializes the D-IS memory system. 
argc and argv are parameters taken from the command line.  

• void DIS_GetProcessRank(int *rank). Gets the rank of a process inside the 
current communicator.  

• void DIS_Finalize(). Finalizes the D-IS memory system and stops the execu-
tion of all MPI routines.  

The D-IS memory system also has the following instructions 

• int DIS_Request(int node, int id, int pos). It requests the element pos 
of the I-Structure id to process node. Remote requests are stored in a list whose 
index is attached to a MPI message as a continuation vector. This routine returns 
the position of the request in the list. 

• void DIS_RecvRequest(int node). This instruction is divided into three steps. 
First, an MPI_Recv instruction is executed to receive a request. Secondly, local 
D-IS is consulted to obtain information about the I-Structure element requested. 
If the I-Structure element is in the “empty” or “deferred” state, then the request is 
added to the end of the deferred-reads queue and no further action is taken. Fi-
nally, as soon the I-Structure element becomes available, the value is sent back to 
the requester by using another MPI_Send call.  
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• double DIS_RecvDatum(int index). An MPI_Recv instruction is executed to 
receive a message from node. Index specifies the position from the list of remote 
requests where the continuation vector is stored. This routine returns the value of 
the I-Structure element requested.  

• Void DIS_Write(int id, int pos, double value). This instruction stores a 
value in the I-Structure id at position pos. If that element is in the “deferred” 
state the value stored is copied to all continuation vectors and state is changed to 
“full”; if element is in “empty” state the value is stored in that position and its 
state is changed to “full”. If element is “full” state then the store operation cannot 
be completed and it causes a fatal error.  

1 
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9 

10 
11 
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13 
14 
15 
16 
17 
18 

int main(int argc, char **argv ){ 
-CODE- 
if (rank==0){ 
  for (j=1; j<PROCS; j++) 
   for (i=0; i<n; i++) 
    index[i]=DIS_Request(j, ID, i); 
   for (j=1; j<PROCS; j++) 
    for (i=0; i<n; i++) 
     data[i]=DIS_RecvDatum(index[i]); 
 } 
 else{ 
  for (i=0; i<n; i++) 
    DIS_Write(ID, i, value[i]); 
  for (i=0; i<n; i++) 
    DIS_RecvRequest(0); 
 } 
-CODE- 
} 

Fig. 3. Original user code 

3.2 Code Transformation Description Following an Example Code 

An example of code transformation by exploiting constant information is presented 
next. Fig. 3 shows the original user code to be optimized. In this code, process 0 sends 
request for n elements to the rest of the processes in the communicator.  

As constant input information, we provide the following parameters: PROCS=2, 
n=3, ID=3. For rank=1 we define I-Structure elements such as: ID=3, element=0, 
value=12.7 and ID=3, element=2, value=38.5 

3.2.1 Main-Body Routine Code Duplication 
In this step, the original main-body routine code is copied as many times as there are 
specified processes. The main-body routine code is substituted for a switch-case in-
struction that selects the appropriate code for each process.  The code for a particular 
process is specified by the function main_process_X, where X is the rank number and 
it is an exact copy of the original main-body code. In Fig. 4, we see how this code 
transformation is done in the example code: a new main-body code is inserted (lines 
1-12) and it contains a switch instruction where the variable rank has two possible op-
tions because it is intended to run with two processes. Also, two new functions have 
been inserted in the code, main_process_0 (lines 14-32) and main_process_1 (lines 
34-52), these functions specify the code for each process. 
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Int main(int argc, char **argv ){ 
DIS_Init(&argc,&argv);        
DIS_GetProcessRank(&rank); 
switch(rank) { 
     case 0: main_process_0();  
             break; 
     case 1: main_process_1();  
             break; 
}; 
DIS_Finalize(); 
return 1; 
} 
 
int main_process_0(){ 
-CODE- 
if (rank==0){ 
 for (j=1; j<PROCS; j++) 
  for (i=0; i<n; i++) 
   index[i]=DIS_Request(j, ID, i); 
 for (j=1; j<PROCS; j++) 
  for (i=0; i<n; i++) 
   data[i]=DIS_RecvDatum(index[i]); 
} 
else{ 
 for (i=0; i<n; i++) 
  DIS_Write(ID, i, value[i]); 
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for (i=0; i<n; i++) 
 DIS_RecvRequest(0); 
} 
-CODE- 
return 1 ; 
} 
 
int main_process_1(){ 
-CODE- 
if (rank==0){ 
 for (j=1; j<PROCS; j++) 
  for (i=0; i<n; i++) 
   index[i]=DIS_Request(j, ID, i); 
 for (j=1; j<PROCS; j++) 
  for (i=0; i<n; i++) 
   data[i]=DIS_RecvDatum(index[i]); 
} 
else{ 
 for (i=0; i<n; i++) 
  DIS_Write(ID, i, value[i]); 
 for (i=0; i<n; i++) 
  DIS_RecvRequest(0); 
} 
-CODE- 
Return 1 ; 
} 

Fig. 4. Main-body routine code duplication 
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Int main(int argc, char **argv ){ 
DIS_Init(&argc,&argv);        
DIS_GetProcessRank(&rank); 
switch(rank) { 
     case 0: main_process_0(); 
             break; 
     case 1: main_process_1();  
             break; 
}; 
DIS_Finalize(); 
return 1; 
} 
 
int main_process_0(){ 
-CODE- 
if (0==0){ 
for (j=1; j<2; j++) 
 for (i=0; i<3; i++) 
  index[i]=DIS_Request(j, 3, i); 
 for (j=1; j<2; j++) 
  for (i=0; i<3; i++) 
  data[i]=DIS_RecvDatum(index[i]); 
 } 
 else{ 
 for (i=0; i<3; i++) 
  DIS_Write(3, i, value[i]); 
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for (i=0; i<3; i++) 
 DIS_RecvRequest(0); 
} 
-CODE- 
return 1; 
} 
 
int main_process_1(){ 
-CODE- 
if (1==0){ 
 for (j=1; j<2; j++) 
  for (i=0; i<3; i++) 
  index[i]=DIS_Request(j, 3, i); 
 for (j=1; j<2; j++) 
  for (i=0; i<3; i++) 
  data[i]=DIS_RecvDatum(index[i]); 
} 
else{ 
 for (i=0; i<3; i++) 
  DIS_Write(3, i, value[i]); 
 for (i=0; i<3; i++) 
  DIS_RecvRequest(0); 
 } 
-CODE- 
return 1; 
} 

Fig. 5. Constant propagation to identify static loops 

3.2.2 Constant Propagation 
In this step, we propagate constant information throughout the code to detect any pos-
sible static loop. In the example (see Fig. 5 for details), we propagate for rank=0 the 
constants PROCS=2, n=3, ID=3 and for rank=1 we propagate: PROCS=2, n=3, ID=3.  

3.2.3 Dead-Code Elimination 
Instructions that will never be processed by a particular process are eliminated in this 
step (see Fig. 6 for resulting code); for instance, conditional expressions depending on 
the rank value. In the example, from Fig. 5, we see that lines 24-29 in function 
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main_process_0 will never be executed by process 0; the same happens in function 
main_process_1 where lines 36-43 will never be processed by process 1.  

3.2.4 Unrolling Loops 
All loops involving memory accesses are unrolled to detect possible static instructions 
inside loops. In the example code (Fig. 6), there are six loops that can be unrolled 
(lines 14, 15, 17, 18, 26, and 28).  Fig. 7 shows the code after the loops have been un-
rolled. 
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int main(int argc, char **argv ){ 
DIS_Init(&argc,&argv);        
DIS_GetProcessRank(&rank); 
switch(rank) { 
  case 0: main_process_0(); break; 
  case 1: main_process_1(); break; 
}; 
DIS_Finalize(); 
return 1; 
} 
 
int main_process_0(){ 
-CODE- 
for (j=1; j<2; j++) 
 for (i=0; i<3; i++) 
 index[i]=DIS_Request(j, 3, i); 
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for (j=1; j<2; j++) 
 for (i=0; i<3; i++) 
  data[i]=DIS_RecvDatum(index[i]); 
-CODE- 
return 1; 
} 
 
int main_process_1(){ 
-CODE- 
for (i=0; i<3; i++) 
 DIS_Write(3, i, value[i]); 
for (i=0; i<3; i++) 
 DIS_RecvRequest(0); 
-CODE- 
return 1; 
} 

Fig. 6. Code after dead-code elimination 
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int main(int argc, char **argv ){ 
DIS_Init(&argc,&argv);        
DIS_GetProcessRank(&rank); 
switch(rank) { 
     case 0: main_process_0();   
             break; 
     case 1: main_process_1();  
             break; 
}; 
DIS_Finalize(); 
return 1; 
} 
 
int main_process_0(){ 
-CODE- 
index[0]=DIS_Request(1, 3, 0); 
index[1]=DIS_Request(1, 3, 1); 
index[2]=DIS_Request(1, 3, 2); 
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data[0]=DIS_RecvDatum(index[0]); 
data[1]=DIS_RecvDatum(index[1]); 
data[2]=DIS_RecvDatum(index[2]); 
-CODE- 
return 1; 
} 
 
int main_process_1(){ 
-CODE- 
DIS_Write(3, 0, value[0]); 
DIS_Write(3, 1, value[1]); 
DIS_Write(3, 2, value[2]); 
DIS_RecvRequest(0); 
DIS_RecvRequest(0); 
DIS_RecvRequest(0); 
-CODE- 
return 1; 
} 

Fig. 7. Unroll loops inside each local_main functions 

3.2.5 Final Constant Propagation 
We propagate constants throughout the code to reach variables inside the loops that 
may not be processed during first propagation. In Fig. 8, we show the code after 
propagation; lines 28 and 30 have been modified specifying the values to be stored in 
the I-Structure 3 positions 0 and 2. 

3.2.6 Constant Requests Evaluation for Remote I-Structure Elements 
This step detects static memory accesses and eliminates them. Each constant request 
is erased from the code and a DIS_RemoteRequest() function is inserted instead in the 
main_process_X() function of the remote process code. 
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int main(int argc, char **argv ){ 
DIS_Init(&argc,&argv);     
DIS_GetProcessRank(&rank); 
switch(rank) { 
     case 0: main_process_0();   
             break; 
     case 1: main_process_1();  
             break; 
}; 
DIS_Finalize(); 
return 1; 
} 
 
int main_process_0(){ 
-CODE- 
index[0]=DIS_Request(1, 3, 0); 
index[1]=DIS_Request(1, 3, 1); 
index[2]=DIS_Request(1, 3, 2); 
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Data[0]=DIS_RecvDatum(index[0]); 
data[1]=DIS_RecvDatum(index[1]); 
data[2]=DIS_RecvDatum(index[2]); 
-CODE- 
return 1; 
} 
 
int main_process_1(){ 
-CODE- 
DIS_Write(3, 0, 12.7); 
DIS_Write(3, 1, value[1]); 
DIS_Write(3, 2, 38.5); 
DIS_RecvRequest(0); 
DIS_RecvRequest(0); 
DIS_RecvRequest(0); 
-CODE- 
return 1; 
} 

Fig. 8. Code after constant propagation 
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int main(int argc, char **argv ){ 
  DIS_Init(&argc,&argv);        
  DIS_GetProcessRank(&rank); 
  switch(rank) { 
    case 0: main_process_0(); 
            break; 
    case 1: main_process_1();  
            break; 
  }; 
  DIS_Finalize(); 
  return 1; 
} 
 
 
int main_process_0(){ 
  -CODE- 
  data[0]=DIS_RecvDatum(index[0]); 
  data[1]=DIS_RecvDatum(index[1]); 
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  data[2]=DIS_RecvDatum(index[2]); 
  -CODE- 
  return 1; 
} 
 
int main_process_1(){ 
  -CODE- 
  base=0; 
  DIS_Write(3, 0, 12.7); 
  DIS_Write(3, 1, value[1]); 
  DIS_Write(3, 2, 38.5); 
  DIS_RemoteRequest(0,3,0,base+0); 
  DIS_RemoteRequest(0,3,1,base+1); 
  DIS_RemoteRequest(0,3,2,base+2); 
  base=3; 
  -CODE- 
  return 1; 
} 

Fig. 9. Static messages evaluation by inserting DIS_RemoteRequest()functions in the data-
owner (process that stores data) text code 

The introduction of the DIS_RemoteRequest() functions insert in local I-Structure 
elements a remote deferred read. From Fig. 8, lines 16-18 are constant requests and 
can be transformed into DIS_RemoteRequest() functions as can be seen in Fig. 9 in 
lines 30-32. Base is a variable that adjusts index when loops involving memory re-
quests cannot be unrolled. 

3.2.7 Constant Remote Request Completion 
In this step, each main_process_X()function is analyzed to check if any of the 
DIS_RemoteRequest()functions refers to an I-Structure element already defined by a 
DIS_Write() function.  If so, there is no need to wait until execution time to complete 
this evaluation, it can be evaluated during this optimization step. Then, the corre-
sponding DIS_RecvDatum()function can be deleted and substituted by the constant 
value already defined. From Fig. 9, lines 30 and 32 refer to an I-Structure element al-
ready defined in lines 27 and 29 respectively. 

Therefore, lines 30 and 32 (Fig. 9) can be evaluated by copying values 12.7 and 
38.5 into the main_process_0() code as is shown in Fig. 10, lines 17 and 19.  
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In this section, we have shown above how to partially evaluate remote memory re-
quests by exploiting the I-Structures’ features and constant propagation prior to the 
execution of the parallel program. In this particular data independent example, three 
of the messages needed to perform remote memory requests can be fully evaluated 
while 2/3 of the messages that answer remote requests can be also fully evaluated. 
Hence, from six messages that were required to be evaluated at execution time, five of 
them were evaluated during the optimization technique. 

1  
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int main(int argc, char **argv ){ 
  DIS_Init(&argc,&argv); 
  DIS_GetProcessRank(&rank); 
  switch(rank) { 
    case 0: main_process_0();   
            break; 
    case 1: main_process_1();  
            break; 
  }; 
  DIS_Finalize(); 
  return 1; 
} 
 
 
int main_process_0(){ 
  -CODE- 
  data[0]=12.7; 
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  data[1]=DIS_RecvDatum(index[1]); 
  data[2]=38.5; 
  -CODE- 
  return 1; 
} 
 
int main_process_1(){ 
  base=0; 
  -CODE- 
  DIS_Write(3, 0, 12.7); 
  DIS_Write(3, 1, value[1]); 
  DIS_Write(3, 2, 38.5); 
  DIS_RemoteRequest(0,3,1,base+1); 
  base=3; 
  -CODE- 
  return 1; 
} 

Fig. 10. Constant information in remote node is transferred to the requester 

4 Experimental Results 

This optimization technique has been tested with several algorithms such as matrix 
multiplication, conjugate gradient, and fast Fourier transform [7, 8] running in a SGI 
Origin 2000 with 10 MIPS R10000 processors and a PC Cluster with 8 Pentium III 
processors. In this section, we show experimental results for a 4 Dual-Pentium III PC 
Cluster in a 10/100 Fast Ethernet point-to-point interconnection and 512 MB of mem-
ory in each node. Programs presented in the section use no collective communication, 
cache mechanism, message coalescing, or data locality exploitation. These restrictions 
are set just to observe how much performance can be obtained just by the partial 
evaluation technique alone. 

We present experimental results using the 2D Haar wavelet transform (2D-HWT) 
applied to a 1024x1024 image. The Haar wavelet transform is the first known wave-
let, proposed in 1909 by Alfred Haar [17]. The Haar wavelet is also the simplest pos-
sible wavelet. As opposed to the functions sine and cosine used for Fourier trans-
forms, a wavelet not only has locality in the frequency domain but also in the time or 
spatial domain. The algorithm produces as output a file containing the average of 
original image together with the detail information of the same image.  

We chose 2D-HWT because it is a data independent algorithm. This feature makes 
it well suitable to show the advantages of our optimization technique. With this 
benchmark program, we intend to demonstrate how parallel programs can benefit 
when part of the input information is constant. In benchmark program, we assume that 
different percentages of the input image are known. This assumption is reasonable in 
digital image processing where images may contain a constant background or fixed 
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objects. In experiments, we run the program that implements 2D-HWT and use D-IS 
memory system.  

We show results for different percentages of the image, network latencies, and 
number of processing elements (PEs). We define the following notation: 

DIS - Refers to the original program without any optimization.  
DIS(p) - Refers to the optimized program running when p percentage of the image 

is known. When zero percentage of the image is known, technique can still be per-
formed because the sending of requests can be evaluated if image size is provided. 

0

100

200

300

400

500

600

2 PEs 4 PEs 8 PEs

T
h

o
u

sa
n

d
s

N
u

m
b

er
 o

f 
M

es
sa

g
es

DIS  DIS(0) DIS(5) DIS(20)

 
0.0

0.5

1.0

1.5

2.0

2.5

3.0

 DIS(0) DIS(5) DIS(20)

R
ed

u
ct

io
n

 R
at

e

 

Fig. 11. Number of messages sent varying the
number of processing elements and the per-
centage of the image that is known 

Fig. 12. Reduction in the message rate 
when part of the image (0%, 5%, and 20%) 
is known 

4.1 Number of Messages Analysis 

Fig. 11 shows how the number of messages sent by optimized and non-optimized 
programs varies with respect to the number of PEs. Comparing DIS and DIS(0) from 
this figure, we can see that optimization technique can eliminate half of the messages 
just by knowing the image dimension and the number of processing elements avail-
able. Under these circumstances memory requests can be sent even without knowing 
the value of any pixels of the image.  

These instructions represent half of the messages to send; the other half is required 
to send the value of elements when they become available.  

We also see that the number of messages is reduced when the number of processing 
elements increases; this is an effect of parallelization and data distribution. Compar-
ing DIS(0), DIS(5) and DIS(20); we also see the impact of the technique when part of 
the image is known. In this case, not only the requests can be performed which is the 
case between DIS and DIS(0), but also some requests can be answered, thereby elimi-
nating more messages, as seen in Fig. 11. 

These results are confirmed in Fig. 12, which shows the reduction in the rate of 
message. This measurement is the ratio between the number of messages sent by the 
DIS program over the number of messages sent by the DIS(k) programs. As seen in 
the figure, this ratio is at least two and increases when part of the image is known. 
This happens for 2, 4, and 8 PEs.  
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4.2 Execution Time Reduction Analysis 

Fig. 13 shows the execution time reduction rate obtained with DIS program varying 
the percentage of constant information, number of PEs and the interconnection net-
work latency. Execution time reduction rate is the ratio between DIS execution time 
over DIS(k) execution time. From this figure, we see the impact of the technique with 
different interconnection network latencies. 
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Fig. 13. Execution time reduction rate vary-
ing the number of PEs, the percentage of 
constant information and the interconnection 
network speed. We analyze (a) twice faster 
(b) original and (c) twice slower network 
speeds 

Fig. 14. Speedup of DIS, DIS(0), DIS(5), 
DIS(20) programs with different numbers of 
PEs. We present data for (a) twice faster (b) 
original and (c) twice slower interconnection 
network 
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In Fig. 13a, the interconnection network is twice faster than network in Fig. 13b and 
four times faster than in Fig. 13c; while the network in Fig. 13b is twice faster than 
the network in Fig. 13c. Hence, from this figure we see that the reduction rate is 
higher when the interconnection network is slower. This means that technique makes 
single assignment memory system more robust and latency tolerant.  

We also see that there is almost no optimization possible when there is just one PE 
because technique gets its real advantage from remote memory operations instead of 
local memory operations. Also, when we increase the percentage of constant input in-
formation from 0, 5, and 20, there is a small increment in the reduction ratio because a 
second message is eliminated; however, the processing of that message is not so time-
consuming when compared with the time spent by sending and receiving requests. 
Moreover, optimization is reduced when the number of PEs is increased.  This is due 
to the data distribution between PEs; in other words, when more PEs are added, then 
more messages are required to exchange information. 

This effect does not mean that the optimized program runs slower; this only means 
that the original program execution time and the execution time of its optimized ver-
sion are becoming similar. 

4.3 Speedup 

Fig. 14 shows the speedup obtained by benchmark programs when increasing the 
number of PEs and varying the interconnection network speed by a factor of two. We 
compare the time spent by parallel programs running in several PEs with respect to 
the same parallel implementation running in a single PE.  

Fig. 14a, 14b, and 14c show that DIS programs have a speedup below one which 
means that programs with more than one PE run slower than their sequential counter-
part. This is due to the exchange of messages, which are time consuming; however, 
with the introduction of more PEs, the program begins speeding up. When the inter-
connection network is fast enough, the speedup becomes higher than one (see Fig. 14a 
DIS with 8 PEs).  However, when the technique is applied to DIS program even with-
out any image values, which is the case of DIS(0), we note a positive speedup. This 
tendency is also valid for DIS(5) and DIS(20) execution times.  

In these cases, the overhead introduced by the management of I-Structures and the 
communication times can be masked by the technique, producing a faster optimized 
code. DIS(0), DIS(5), and DIS(20) display a similar speedup because the execution 
time is similar in these cases. 

5 Related Work 

In this section we review related work in the area of parallel program optimization. 
We analyze optimizations performed to the communication library (MPI) in software 
and hardware also we review optimizations performed at compiled time which ex-
ploits static information about network or communication patterns.  
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5.1 Optimization of Inter-Process Communication 

Optimizations of the MPI barrier operation are discussed in [19]. Moh et al propose a 
fast tree-based barrier synchronization scheme for 2-D meshes producing a reduction 
in the number of messages by combining the synchronization messages. 

In [4], a design and implementation of the MPI collective communication instruc-
tions optimized for clusters of workstations is presented. The system consists of two 
main components: the MPI-CCL layer and a User-Level Reliable Transport Protocol 
(URTP). The MPI-CCL layer includes the collective communication functionality of 
MPI and the URTP works as an interface with the LAN Data-Link Layer. Their sys-
tem is integrated with the operative system through a kernel extension mechanism. 
These operations reduce significantly the number of messages during the execution of 
a MPI program.  However, the correct utilization of these instructions depends on the 
ability of programmer. 

In [10], a prototype of the D-OSC, a SISAL compiler for distributed memory ma-
chines is presented. D-OSC is a further research of the Optimizing SISAL Compiler 
(OSC) [16]. D-OSC generates C code with MPI calls. In D-OSC, messages are elimi-
nated using rectangular arrays, multiple-alignment, and block messages.  

In [13], a library of collective communication operations, called MAGPIE, is pre-
sented. MAGPIE is optimized for wide area systems and its algorithms are designed 
to send the minimal amount of data over the slow wide area links, and to only incur 
singlewide area latency. MAGPIE implements the complete set of collective opera-
tions according to the MPI standard. Reduction operations with short data vectors are 
frequently used in parallel applications.  The paper also discusses optimizations such 
as message vectorization, message coalescing, and redundancy elimination imple-
mented in MAGPIE. 

5.2 Optimizations at Compile-Time 

Single assignment is a fundamental property of variables in functional languages. 
When a variable is only assigned to a value once, then an instance of that variable is 
thereafter semantically equivalent to the value. The single assignment property is used 
in compilers to implement a variety of optimizations [5]. One of the most attractive 
features of single-assignment in parallel systems is that cache coherence is already 
embedded in it [15].  

The PARADIGM compiler [3], provides an automated mean to parallelize sequen-
tial programs for their efficient execution on distributed-memory multi-computers. 
PARADIGM performs a number of optimizations: automatic data partitioning and 
distribution, synthesis of high-level communication, and communication optimiza-
tion. These are provided through a generic library interface (MPI is included). Regu-
lar computations are optimized by message coalescing, message vectorization, coarse 
grain pipelining, and message aggregation. It also supports functional, data parallel-
ism, and multithreaded execution. 

In [1], a compiler algorithm that automatically finds computation- and data-
decompositions is presented. This algorithm optimizes both parallelism and data lo-
cality. Also, a mathematical framework to systematically derive decompositions is in-
troduced. An optimization algorithm focuses on programs with nesting of parallel and 
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sequential loops. The algorithm attempts to uncover a static decomposition that ex-
ploits the maximum degree of parallelism available in the program to minimize com-
munication, such that there is no reorganization or pipeline communication. It can ex-
ploit parallelism in both fully parallelizable loops as well as loops that require explicit 
synchronization. If communication is needed, the algorithm will attempt to introduce 
the least expensive forms of communication into those parts of the program that are 
least frequently executed. 

Another optimization technique performed at compile-time and applied to mes-
sage-passing parallel programs is Compiled Communication (CC) [21]. In CC, the 
compiler determines the communication requirements in a program and manages net-
work resources, such as multicast groups and buffer memory, statically using the 
knowledge of both the underlying network architecture and the application communi-
cation requirement. In this technique, the compiler analyzes the program and parti-
tions it into phases. Each phase has a fixed communication pattern and the compiler 
inserts code to reconfigure the network at the end of each phase to manage network 
resources directly. CC can eliminate runtime communication overhead produced by 
group management. CC can also use prolonged connections for communications and 
amortize the startup overhead over a number of messages. However, CC cannot be 
applied to communications where information is not available at compile time. In 
other words, the programming style influences the effectiveness of the CC technique. 
Recently, CC has been proposed to improve the performance of MPI routines for 
clusters of workstations, and an MPI prototype called CC-MPI [12] has been de-
signed. The CC-MPI supports compiled communication on Ethernet switched clus-
ters. It allows the user to manage network resources such as multicast groups directly 
and to optimize communications based on the availability of the communication in-
formation. The CC-MPI optimizes one-to-all, one-to-many, all-to-all, and many-to-
many collective communication routines using the CC technique. 

6 Conclusions 

In this paper, we have provided detailed information about how to perform code ma-
nipulations in order to optimize parallel programs by exploiting static information. 
This technique eliminates messages if the input data of MPI_Send() and MPI_Recv() 
routines are known. We show that code transformations can be considered as efficient 
optimization tool and they can be done by a partial evaluator using D-IS memory sys-
tem. We have shown that partial evaluation can be extended to a wider class of pro-
gram paradigms, and efficiently applied to distributed-applications, reducing the 
number of the most time-consuming operations in addition to the known optimiza-
tions of sequential programs. In some applications with a partially given input, the 
number of remote memory requests can be decreased dramatically by evaluating 
ready-to-execute MPI_Send() and MPI_Recv() routines. Traffic in the interconnection 
network and the network latency is also reduced and it makes the system more scal-
able especially with slow interconnection media.  

Technique also improves design process avoiding hand-made optimization and ex-
ploiting features of parallel system automatically. Technique may also increase code 
and memory consumption while improving efficiency; however, the same occurs with 
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traditional partial evaluation technique. The regulation of extra code inserted is made 
by limitation of unfolding or depth of recursion, or loop unrolling, etc. automatically 
or with human interaction during partial evaluation step. Moreover, code that handles 
transactions (send/receive routines) could grow with less speed than specialized code 
for each processor. In any case, elimination of the messages is much more time saving 
than time increasing by code growing.  
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