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Abstract. This paper focuses on a bi-objective experimental 

evaluation of online scheduling in the Infrastructure as a 

Service model of Cloud computing regarding income and 

power consumption objectives. In this model, customers 

have the choice between different service levels. Each 

service level is associated with a price per unit of job 

execution time, and a slack factor that determines the 

maximal time span to deliver the requested amount of 

computing resources. The system, via the scheduling 

algorithms, is responsible to guarantee the corresponding 

quality of service for all accepted jobs. Since we do not 

consider any optimistic scheduling approach, a job cannot 

be accepted if its service guarantee will not be observed 

assuming that all accepted jobs receive the requested 

resources. In this article, we analyze several scheduling 

algorithms with different cloud configurations and 

workloads, considering the maximization of the provider 

income and minimization of the total power consumption of 

a schedule. We distinguish algorithms depending on the type 

and amount of information they require: knowledge free, 

energy-aware, and speed-aware. First, to provide effective 

guidance in choosing a good strategy, we present a joint 

analysis of two conflicting goals based on the degradation in 

performance. The study addresses the behavior of each 

strategy under each metric. We assess the performance of 

different scheduling algorithms by determining a set of non-

dominated solutions that approximate the Pareto optimal set.  

We use a set coverage metric to compare the scheduling 

algorithms in terms of Pareto dominance.  
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We claim that a rather simple scheduling approach can 

provide the best energy and income trade-offs. This 

scheduling algorithm performs well in different scenarios 

with a variety of workloads and cloud configurations. 
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1 Introduction  

The implementation of a service-oriented paradigm in 

computing leads to Service Level Agreements (SLAs). The 

concurrent availability of different service levels in multi-

user systems must have a strong influence on job scheduling 

since customers with better service levels expect preferred 

attendance. To be attractive to a wide range of customers 

providers want to accommodate different needs that are 

different levels of service.  

As a representative of present IaaS providers, we use 

Amazon Web Services (AWS). An AWS-customer can 

select one of several instances that differ in virtual CPUs, 

RAM, and memory. In addition, the customer can add 

additional services like network, data bases, and applications. 

If a provider is running out a requested instance, he may 

reject this request and provide an alternative offer. But in 

order to avoid the risk of alienating the customer, he often 

allocates a better instance at the price of the requested 

instance. Being aware that some customers may get used to 

this better service at low cost while others become annoyed 

that they have to pay more for the same service than fellow 

customers, providers want to avoid this voluntary upgrade 

without a large amount of overprovisioning. Therefore, 

efficient job scheduling is very important. 

AWS gives a customer the choice between spot instances, 

reserved instances and dedicated instances. These instances 

represent different forms of the service level with respect to 

the availability of the selected resources. In general, we can 

state that service levels differ in the amount of computing 

resources a customer is guaranteed to receive within a 

requested (or negotiated) time, and the cost per resource unit.  

SLAs can be extended to include provider and consumer 

responsibilities, bonuses and penalties, availability, 

conditions of services supporting, rules and exceptions, 

excess usage thresholds and charges, payment and penalty 



A. Tchernykh et al. 

 

regulation, purchasing options, pricing policy, payment 

procedure, security and privacy issues, etc. In our study, we 

restrict ourselves to the SLA performance guarantees. 

Clouds typically serve two types of workloads: interactive 

service requests and batch jobs although we may distinguish 

between different classes of batch jobs. In the IaaS service 

model, providers usually do not charge for individual jobs 

but for resource reservations regardless whether the customer 

uses the provided resources or not. Hence, a provider can 

only accept a job if he is able to deliver the guaranteed 

amount of resources. Therefore, the scheduling problem 

resembles deadline scheduling since a provider guarantees to 

observe the quality of service of a request once the job is 

accepted. We allow our scheduling algorithms to upgrade a 

request to use resources with a better performance, without 

increasing the cost charged to the customer (voluntary 

upgrade).  

Since the paper is an extension of our previous work, we 

briefly summarize our relevant previous publications. Based 

on models in hard real-time scheduling [14], Schwiegelshohn 

and Tchernykh [4] introduced a simple model for service 

level based job allocation and scheduling, where each service 

level is described by a slack factor and a price for a 

processing time unit. After a job has been submitted, the 

provider must decide immediately and irrevocably whether 

he accepts or rejects the job. We have analyzed single (SM) 

and parallel (PM) machine models subject to jobs with single 

(SSL) and multiple (MSL) service levels and use competitive 

analysis to determine the worst-case ratio between a provider 

income when applying a given algorithm, and the optimal 

income. We provide such worst case performance bounds for 

four greedy acceptance algorithms SSL-SM, SSL-PM, MSL-

SM, MSL-PM, and two restricted acceptance algorithms 

MSL-SM-R, and MSL-PM-R.  

To show the practicability and competitiveness of these 

algorithms, Lezama et al. [3] and Tchernykh et al. [19, 21] 

presented simulation studies that include several test cases. 

We use workloads based on real production traces of 

heterogeneous HPC systems to demonstrate practical 

relevance of the results. Based on these studies we show that 

the rate of rejected jobs, the number of job interruptions, and 

the provider income strongly depend on the slack factor. In 

practice, the provider sets the slack factor the customer 

accepts or rejects it. Therefore, the slack factor depends on 

market constraints. 

To study certain aspects of the problem, Tchernykh et al. 

[19] transformed the multi-objective problem into a single-

objective one through the method of objective aggregation, 

assuming equal importance of each metric. First, we evaluate 

the degradation in performance of each strategy under each 

metric relative to the best performing strategy for the metric 

considering four service levels. Then, we average these 

values, and rank the strategies. The degradation approach 

provides the mean percentage of the degradation but it does 

not show the negative effects of allowing a small portion of 

the results with large deviation to dominate the conclusions 

based on averages. To analyze those possible negative effects 

and to help with the interpretation of the data generated by 

the benchmarking process, we present performance profiles 

of the strategies.  

Later, Tchernykh et al. [21] determined Pareto optimal 

solutions for the same problem. We assess the performance 

of different strategies by comparing algorithms in terms of 

Pareto dominance with the help of a set coverage metric.  

In this paper, we present an exhaustive experimental study 

of online scheduling strategies on a Cloud. We distinguish 

eight strategies depending on the type and amount of 

information they require. We analyze scheduling strategies in 

three groups: knowledge-free; energy-aware; and speed-

aware. We apply these strategies in the context of executing 

real HPC workloads. We extend our preliminary results 

presented in previous conference articles [19, 21] considering 

up to twenty service levels in order to provide a 

comprehensive performance comparison. 

The paper is structured as follow. The next section 

reviews related works on SLAs and energy-aware 

scheduling. Section 3 presents the problem definition, while 

the proposed schedulers are described in Section 4. Section 5 

provides details of the experimental setup. Section 6 

describes the methodology used for the analysis. 

Experimental validation is reported in Section 7, including a 

single service level, four service levels and the more general  

multiple service level-multiple machine (MSL-MM) with 

five different SLAs and up to five service levels. The 

experimental analysis of the proposed bi-objective schedulers 

when solving a benchmark set of different problem instances 

and scheduling scenarios is reported in Section 8, where 

practical approximations of Pareto fronts and their 

comparison using a set coverage metric are presented. 

Finally, Section 9 concludes the paper and presents the main 

lines for future work. 

2 Related work 

Research on SLAs in Cloud computing has addressed the 

usage of SLAs for resource management and admission 

control techniques, automatic negotiation protocols, 

economic aspects associated with the usage of SLAs for 

service provision, and the incorporation of SLA into the 

Cloud architecture, etc. However, these results are not 

relevant for our study. Little is known about efficiency of 

scheduling solutions that consider SLA. 

To optimize power consumption, three main policies are 

used [1, 2]. Dynamic component deactivation switches off 

parts of the computer system that are not utilized. Dynamic 

Voltage Scaling (DVS) and Dynamic Voltage and Frequency 

Scaling (DVFS) slow down the speed of CPU processing. 

Explicit approaches (e.g. SpeedStep by Intel, or Optimized 

Power Management by AMD) use hardware-embedded 

energy saving features. While the last two policies are 

designed to reduce the power consumption of one resource 

individually, a variant of the first approach is also applicable 

for a whole system consisting of geographically distributed 

resources.  

Therefore, Tchernykh et al. [5] explored the benefits this 

approach when discuss power optimization for distributed 

systems. They turn off/on (activate/deactivate) servers so that 

only the minimum number of servers required to execute a 

given workload are kept active. A similar concept is used by 
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Raycroft et al. [6] who analyzed the effects of virtual 

machine allocation on power consumption.  

DVS/DVFS energy-aware approaches have been 

commonly addressed in literature, from early works like the 

one by Khan and Ahmad [7] using a cooperative game 

theory to schedule independent jobs on a DVS-enabled grid 

to minimize makespan and energy. Lee and Zomaya [8] 

studied a set of DVS-based heuristics to minimize the 

weighted sum of makespan and energy. Later, these results 

were improved by Mezmaz et al. [9] by proposing a parallel 

bi-objective hybrid genetic algorithm (GA). Pecero et al. [10] 

studied two-phase bi-objective algorithms using a Greedy 

Randomized Adaptive Search Procedure (GRASP) that 

applies a DVS-aware bi-objective local search to generate a 

set of Pareto-optimal solutions. Lindberg et al. [11] proposed 

six greedy algorithms and two GAs to optimize makespan 

and energy subject to deadline constraints and memory 

requirements. Using these results on DVS/DVFS, we suggest 

an abstract energy model that does not only use an on/off 

state for a server. Similar to the studies mentioned above, we 

also consider bi-objective optimization but apply different 

methods to determine non-dominated solutions.  

Our results extend the results of Nesmachnow et al. [12] 

who studied a Max-Min approach by applying twenty fast 

list scheduling offline algorithms to solve the bi-objective 

problem of optimizing makespan and power consumption. 

These results demonstrate that accurate schedules with 

different makespan/energy trade-offs can be obtained with 

the two-phase optimization model. Using the same approach, 

Iturriaga et al. [13] use the same approach and showed that a 

parallel multi-objective local search based on Pareto 

dominance outperforms deterministic heuristics based on the 

traditional Min-Min strategy. But different from the older 

studies, we do not use the makespan objective to characterize 

computer performance but the total amount of accepted 

resource requests. 

In another study, Nesmachnow et al. [25] focused on 

multiobjective planning of cloud datacenters considering 

SLAs and power profiles. Their experimental analysis 

performed on realistic green (solar powered) datacenters 

demonstrates that accurate schedules, accounting for 

different trade-offs between power, temperature and QoS, 

can be computed by combining a traditional NSGA-II 

multiobjective evolutionary algorithm with a backfilling 

technique to deal with sleeping/switched off computing 

resources. In our study, we do not consider temperature as a 

separate objective since it is a constraint and has a direct 

influence on energy consumption. In addition, we consider 

the impact of system knowledge on our objectives.  

3 Problem definition 

We follow the system model and power consumption 

model presented by Tchernykh et al. [19, 21]. We are 

interested in providing QoS guarantees and optimizing both 

the provider income and power consumption. 

3.1 Job model 

Let 1 2 l kSL= SL ,SL ,…,SL ,…,SL   be a set of service levels 

offered by SLA. For a given 
l

SL , the job jJ  has the 

performance requirement l

js  of the request that is 

guaranteed by providing processing capability of VM 

instances, and charged with cost l

ju  per execution time unit 

depending on the urgency of the submitted job. This 

urgency is denoted by a slack factor of the job 1l

jf . 

   maxmax

l

juu   denotes the maximum cost for all kl ..1  

and nj ..1 . The total number of jobs submitted to the 

system is rn .  

Each job jJ  is described by a tuple  , , , l

j j j jr w d SL  

containing the release date jr , the amount of work jw  that 

represents the computing load of the application to be 

completed before the required response time, the deadline 

jd , and the service level SLSLl

j  . Let 
l

jjj sw=p /  be the 

guaranteed time that the system will spend for processing of 

the job before its deadline according to the service level 
l

jSL . Let jd  be the latest time that the system would have 

to complete the job jJ  in case it is accepted. This value is 

calculated at the release of the job as l

j j j jd = r + f p . The 

maximum deadline is  jjmax dmax=d . When the job is 

released, characteristics of the job become known. 

The income that the system will obtain for the execution 

of job jJ  is calculated as l

j ju p . Once the job is released, 

the provider has to decide, before any other job arrives, 

whether the job is accepted or not.  

In order to accept the job jJ , the provider should ensure 

that some machine in the system is capable to complete it 

before its deadline. In the case of acceptance, later submitted 

jobs cannot cause job jJ  to miss its deadline.  

Once a job is accepted, the scheduler uses some rule to 

schedule the job. Finally, the set of accepted jobs 

 nJ,…,J,J=J 21  is a subset of released jobs, where rn n  

is the number of jobs that are accepted. 

3.2 Machine model 

We consider a set of m  heterogeneous machines 

 1 2 mM = M ,M ,…,M . Each machine iM  is described by a 

tuple ( ii eff,s ) indicating its relative processing speed is  

and its energy efficiency ieff .  

At time t , only a subset of all machines can accept a job. 

Let   1 2

a

am
M t = M ,M ,…,M 

 
 be such a set of admissible 

machines. This set is defined for each job as a subset of 

available machines that can execute this job without 

deadline violation, and can guarantee computing power 
l

js  
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for processing. Machines that have processing speed less 

than the speed guaranteed by the SLA cannot accept the job. 

The value is  is conservatively selected such that the 

speed-ups of all target applications exceed is . Hence, users 

receive the same guarantees whatever processors are used. 

Deadlines are calculated based on the service level and 

cannot be changed, and guaranteed processing time is not 

violated by slower processing. Cmax denotes the makespan of 

the schedule. 

3.3 Energy model 

In the energy model, we assume that the power 

consumption  tPi  of machine iM  at time t  consists of a 

constant part idleP  that denotes the power consumed by 

machine iM  in idle state, and a variable part workP  that 

depends on the workload:       idle work

i i iP t = o t P +w t P , 

where   1=toi  if the machine is ON at time t  otherwise 

  0=toi , and   1=twi  if the machine is busy otherwise 

  0=twi . The total power consumed by the cloud system is 

the sum of power consumed during 

operation:
max

0
( )

C
op op

t
E P t dt


  , with 

1 1
( ) ( ) ( ) ( ( ) )

m mop iddle work

i i ii i
P t P t o t P w t P

 
     . 

3.4 Optimization criteria 

In order to evaluate the system performance, we use a series 

of metrics that are useful for systems with SLs , where 

traditional measures such as makespan become irrelevant. 

For this kind of system, the metrics must allow the provider 

to measure the performance of the system in terms of 

parameters that helps him to establish utility margins as well 

as user satisfaction for the service.  

Two criteria are considered in the analysis: Maximization 

of the service provider income and minimization of the 

power consumption opE . The income is defined as 

 
1

n l

j jj
V = u p


 . Due to the definition of the problem, we 

have to assure a benefit for the service provider. To show 

how the income generated by our algorithm gets closer to 

the value obtained by an optimal income  *AV  we use the 

competitive factor ρ . The competitive factor ρ  is defined 

as: 
 
 

1

*
1

n l

j jj
u p

ρ=
V A







 where the optimal income  *AV  

is approximated by an upper bound 

 
*

1

n
r

max j max

j=

V A u min p ,d m
  

    
 
 .  

To derive an upper bound of the income we consider two 

possible cases. The maximum income can be archived if all 

released jobs are processed, or if accepted jobs are 

processed on all machines without idle time until the 

maximum deadline. In both cases jobs have the maximum 

price per time unit.  

The first term of  *AV


 is the sum of the processing 

times of all released jobs multiplied by the maximum price 

per unit execution of all available SLAs. The second term is 

the maximum deadline of all released jobs multiplied by the 

maximum price per unit execution value and the number of 

machines in the system. Due to our admission control 

policy, the system does not execute jobs if their deadlines 

cannot be reached. Therefore, this second term is also an 

upper bound of the total processing time of the system. 

The optimal income is greater than or equal to the upper 

bound:    
* *

V A V A


 , and a lower bound for the 

competitive factor ̂   is obtained by using  
*

V A


. 

4 Scheduling algorithms 

This section describes the scheduling approach and the 

proposed energy-aware SLA scheduling methods. 

4.1 Scheduling approach 

We use a two-level scheduling approach as shown in Fig. 1 

[19, 22, 23, 26]. At the upper level, the system verifies 

whether a job can be accepted or not using a Greedy 

acceptance policy. If the job is accepted then the system 

selects a machine from the set of admissible machines for 

executing the job on the lower level.  

 

 
 

Fig. 1 Two-level scheduling approach using acceptance policies (upper 
level) and allocation strategies (lower level) 

4.2 Higher-level acceptance policies 

We use a greedy higher-level acceptance policy. It is based 

on the Earliest Due Date (EDD) algorithm, which gives 

priority to jobs according to their deadlines. When a job jJ  

arrives to the system, in order to determine whether to 

accept or reject it, the system searches for the set of 
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machines capable of executing job jJ  before its deadline, 

assuring that no jobs in the machine will miss their 

deadlines. If the set of available machines is not empty 

  1a

jM r   job jJ  is accepted otherwise it is rejected. 

This completes the first stage of scheduling.  

We use the preemptive EDD algorithm for each machine 

separately to determine the schedule for this machine since 

this algorithm  is easy to apply and yields an optimal 

solution for the 1 | prmp,
jr ,online | Lmax problem. In 

general, the lateness 
jL  of job jJ  is defined to be 

 max , 0j jc d  . Then, we have 
max max{ }jL L . 

Remember that for all machine schedules in our problems, 

max 0L   must hold as no job can be late. Furthermore, the 

preemptive EDD algorithm produces a non-delay (greedy) 

schedule and therefore does not delay the use of resources to 

the future when yet unknown jobs may need them. With 

preemptive EDD we verify that all already accepted jobs 

with a deadline greater than the deadline of the incoming job 

will be completed before their deadline. 

 

4.3 Lower level allocation strategies 

The machine for job allocation can be determined by taking 

into account different criteria. In this work, we study eight 

allocation strategies (see Table 1). They are characterized by 

the type and the amount of information used for allocation 

decision.  

We distinguish two levels of available information. In 

Level 1, the job execution time, the speed of machines, and 

the acceptance policy are assumed to be known. In Level 2, 

in addition, we know the machine energy efficiency and the 

energy consumed by executing a job.  

Table 1 summarizes the details of the allocation strategies 

used in this work. We categorize the proposed methods in 

three groups: i) knowledge-free, with no information about 

applications and resources [5, 17, 19]; ii) energy-aware, 

with power consumption information; and iii) speed-aware 

with speed of machines information. 

5 Experimental setup 

This section presents the experimental setup, including 

workload and scenarios, and describes the methodology 

used for the analysis. 

All experiments are performed using the grid scheduling 

simulator tGSF (Teikoku Grid Scheduling Framework) [28]. 

tGSF is a standard trace based simulator that is used to study 

grid resource management problems. We have extended 

Teikoku to include our algorithms using the java (JDK 

7u51) programming language. 

5.1 Workloads 

We evaluate the performance of our strategies using traces 

of real HPC jobs obtained from the Parallel Workloads 

Archive [15], and the Grid Workload Archive [16].  

These workloads are suitable for assessing the system 

because our IaaS model with multiple heterogeneous 

parallel machines is intended to execute jobs traditionally 

executed on Grids and parallel machines. 

The performance evaluation under realistic workload 

conditions is essential. The workloads include nine traces 

from: DAS2-University of Amsterdam, DAS2–Delft 

University of Technology, DAS2–Utrecht University, 

DAS2–Leiden University, KHT, DAS2–Vrije University 

Amsterdam, HPC2N, CTC, and LANL. The main details of 

the considered sites are reported on Table 2. Further details 

about the logs and workloads can be found in [15] and [16]. 

It is well known that the demand of jobs is not equally 

distributed over the time and varies with the time of the day 

and the day of the week. Moreover, each individual log 

shows a different distribution. In addition, they are recorded 

in different time zones. Therefore, we need normalization of 

the used workloads by shifting the workloads by a certain 

time interval to represent a more realistic setup. We 

transform the workloads so that all traces begin at the same 

weekday and at the same time of day. To this end, we 

remove all jobs until the first Monday at midnight. Note that 

the alignment is related to the local time, hence the time 

differences corresponding to the original time zones are 

maintained. 

We consider time-zone normalization, profiled time 

intervals normalization, and invalid jobs filtering. Several 

filters are applied to remove certain jobs: submit time < 0; 

run time ≤ 0; number of allocated processors ≤ 0; requested 

time ≤ 0; user ID ≤ 0; status = 0, 4, 5 (0 = job failed; 4 = 

partial execution, job failed; 5 = job was cancelled, either 

before starting or during run).  

5.2 Scenarios 

For all scenarios, we define the number of machines and 

number of SLs, which we use in the experimental study. We 

consider eight infrastructure sizes with the number of 

machines being powers of 2 from 1 to 128. It does not 

exactly match all machines on which the workloads are 

recorded, and in some cases may cause artifacts in the single 

run. To obtain valid statistical values, 30 experiments of 7 

days are simulated. 

The scenarios have the following details: workload of 

seven days; greedy acceptance policy on the higher level; 

heterogeneous machines; eight infrastructure sizes, 20 SLs; 

and the eight lower level allocation heuristics described in 

Table 1. The data in Table 2 show speed, energy efficiency 

and power consumption of the machines obtained from their 

specifications. We see that the speed is in the range [18.6, 

481], energy efficiency is in [0.89, 1.75], power consumption 

is in [17.8, 58.9] for idleP , and in [26, 66] for workP . These 

data we use for our experiments. 
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Table 3 presents different SLAs. SLA i  contains i th 

service levels. Each service level is associated with a price 

per unit of job execution time and a slack factor that 

determines the maximal time span to deliver the requested 

amount of computing resources. 

6 Methodology used for the analysis 

Two criteria are considered in the analysis: income V  and 

power consumption opE . First, we simplify the problem to 

a single objective problem through the method of objective 

weighted aggregation. There are various ways to model 

preferences, for instance, they can be given explicitly by 

specifying the importance of every criterion or a relative 

importance between criteria.  This can be done by a 

definition of criteria weights or criteria ranking by their 

importance. To this end, a degradation-in-performance 

method is applied. Second, we use a multi-objective 

optimization approach that yields a set of non-dominated 

solutions that approach a Pareto optimal set is considered. 

6.1 Degradation in performance 

In order to provide effective guidance in choosing the best 

strategy, we perform a joint analysis of two metrics 

according to the mean degradation methodology proposed in 

Tsafrir et al. [24], and applied for scheduling in [17, 18, 19]. 

First, we evaluate the degradation in performance 

(relative error) of each strategy under each metric. This is 

done relative to the best performing strategy for the metric:  

100)1(   with 
strategy metric value

best found metric value
  . 

We average these values and rank the strategies. The best 

strategy with the lowest average performance degradation 

has rank 1. Note that we try to identify strategies which 

perform reliably well in different scenarios; that is, we try to 

find a compromise that considers all of our test cases.  

Table 1  Allocation strategies 

Type Strategy Level Description 

K
n

o
w

le
d

g
e 

F
re

e 

Rand 1 allocates job j to a suitable  machine randomly  selected using a uniform distribution in the range  1..m . 

FFit 1 allocates job j to the first machine available and capable to execute it. 

MLp 1 allocates job j to the machine with the least load at time jr :  min in , 

E
n

er
g

y
 

aw
ar

e 

Max-eff 2 allocates job j to the machine with largest energy efficiency  max ieff  

Min-e 2 allocates job j to the machine with minimum total power consumption at time jr  :    1
min

jr op

it
P t

  

MCT-eff 2 

allocates job j to the machine with best ratio between  completion time and energy efficiency  /i

max imin C eff , with 

 maxi i

max kc = c  and 
i

kc  being the makespan and completion time of job k in machine i, respectively 

S
p

ee
d
 

aw
ar

e Max-seff 2 allocates job j to the   max i is eff  , 

Max-s 2 allocates job j to the fastest machine:  max is  

Table 2  Experimental setup 

Site Procs 
Energy efficiency 

MFLOPS/W 

Speed  

GFLOPS 
Log #Jobs #User 

IdleP  WorkingP  

DAS2—University of Amsterdam 64 17.8 35.35 1.36 126 

Gwa-t-1-anon_jobs-

reduced.swf 
1124772 333 

DAS2—Delft University of Technology 64 17.8 35.35 1.36 126 

DAS2—Utrecht University 64 17.8 35.35 1.36 126 

DAS2—Leiden University 64 17.8 35.35 1.36 126 

KTH—Swedish Royal Institute of Technology 100 17.8 26 1.75 18.6 

DAS2—Vrije University Amsterdam 144 17.8 35.35 1.32 230 KTH-SP2-1996-2.swf 28489 204 

HPC2N—HPC Center North, Sweden 240 58.9 66 0.89 481 HPC2N-2002-1.1-cln.swf 527371 256 

CTC—Cornell Theory Center 430 17.8 26 1.64 88.4 CTC-SP2-1996-2.1-cln.swf  79302 679 

LANL—Los Alamos National Lab 1024 24.7 31 1.45 65.4 
LANL-CM5-1994-3.1-
cln.swf 

201387 211 

 
 

Table 3 Multiple service levels and corresponding stretch factors 

SLA Stretch factor 

1 
1SL →

1 1f =  

2 
1SL → 1 1f = , 

2SL → 2 2f =  

3 
1SL → 1 1f = , 

2SL → 2 2f = ,
3SL → 3 3f =  

… … 

20 
1SL → 1 1f = , 

2SL → 2 2f = ,..., 
20SL → 20 20f =  

For example, the rank of the strategy may be neither the 

same for all metrics nor for all scenarios. We present metric 

degradation averages to evaluate performance of the 

strategies and show if some strategies tend to dominate 

results. The degradation approach provides the mean values. 

To eliminate the influence of a small portion of data with 

large deviation on the benchmarking process, and help with 
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the interpretation of the data, we present performance 

profiles of our strategies. 

6.2 Performance profile 

The performance profile ( )   is a non-decreasing, 

piecewise constant function that presents the probability that 

a ratio   is within a factor   of the best ratio [20]. The 

function )(  is the cumulative distribution function. 

Strategies with large probability )(  for small   will be 

preferred. 

6.3 Bi-objective analysis 

Multi-objective optimization usually finds a set of solution 

known as a Pareto optimal set [27]. One solution may 

represent a very good solution concerning energy 

consumption while another solution may be a very good 

solution with respect to the income. 

 The goal is to choose the most adequate solution and 

obtain a set of compromise solutions that represent a good 

approximation to the Pareto front. Two important 

characteristics of a good multiobjective technique are 

convergence to the Pareto front and diversity to sample the 

front as fully as possible. A solution is Pareto optimal if no 

other solution improves it in terms of all objective functions. 

Any solution not belonging to the front can be considered of 

inferior quality to those that are included. The selection 

between the solutions included in the Pareto front depends 

on the system preference. If one objective is considered 

more important than the other one then preference is given 

to those solutions that are near-optimal in the preferred 

objective, even if values of the secondary objective are not 

among the best obtained.  

 Often, results fom multi-objectives problems are 

compared via visual observation of the solution space. A 

more formal and statistical approach uses a set coverage 

metric [20]: given two sets of solutions A and B, the metric 

SC(A,B) calculates the proportion of solutions in B, which 

are weakly dominated by solutions of A:  

 
{ | : }b B; a A a b

SC A,B
B

   
  

A metric value SC(A,B) = 1 means that all solutions of B  

are dominated by A, whereas SC(A,B) = 0 means that no 

member of B is dominated by A. This way, the larger the 

value of SC(A,B), the better the Pareto front A with respect to 

B. Since the dominance operator is not symmetric, SC(A,B) 

is not necessarily equal to 1SC(A,B), and both SC(A,B) and 

SC(B,A) have to be computed for understanding how many 

solutions of A  are covered by B  and vice versa. 

7 Experimental validation: degradation in performance.  

This section reports the experimental analysis of the 

proposed schedulers regarding performance degradation. 

We study three scenarios: single service level, four service 

levels, and the more general  multiple service level-multiple 

machine, with five different SLAs and up to five service 

levels. 

7.1 Experimental scenario 1: single service level 

Three case-studies are reported: i) in the Case 7.1.1, we use 

one SL for all jobs. We vary SL from 1 to 20 to compare our 

algorithms with different SLs, and with worst case bound 

found on theoretical analysis; ii) in the Case 7.1.2, for a 

more detail analysis, we restrict ourself to the SLA 4, where 

each job can have one of four SL from the set 
1 4SL= SL ,…,SL    with slack factors 1 41, 4f = …, f = , and 

iii) in the Case 7.1.3, we present a more comprehensive 

study varying SLAs from 1 to 5, first considering 

degradation of the income and energy consumption, for each 

SLA independently, then their means and ranking. 

7.1.1 Single service level-multiple machines 

Fig. 2 presents the competitive factor  in a homogeneous 

environment varying stretch factor f. We see that increasing 

deadlines for all jobs reduces total income but increases the 

flexibility of the scheduler to build schedules closed to the 

optimal income. With f = 20 the competitive factors are 

close to the optimal. This happens when f becomes large 

enough to create a significant difference between job 

deadlines and their processing times. For the scenario with 

m=64, the competitive factor increases from 8.0ρ  with 

1f  to 1ρ  with 5f . 

Fig. 3 presents ρ  with varying f in a heterogeneous 

environment. We see the same tendency of increasing ρ  

with increasing f, however, with a higher variation. 

Fig. 4 and 5 show the degradation of energy consumption in 

homogeneous and heterogeneous environments. 

Degradation increases when f grows. We clearly see that 

heterogeneity degrades performance slightly more than 

twice in energy consumption. In a homogeneous scenario, 

the strategies perform almost identically, while the 

heterogeneous scenario degrades performance with more 

variance. 

7.2. Experimental scenario 2: four service levels 

All users use a SLA with four service levels with 

corresponding slack factors 1 41, 4f = …, f = .  

We report four studies: i) in Case 7.2.1 we analyze the 

income degradation; ii) in Case 7.2.2 we study the power 

consumption degradation; iii) in Case 7.2.3 we study the 

mean degradation in performance; and iv) in Case 7.2.4 we 

show an analysis of the performance profile. 

7.2.1. Income degradation 

In this subsection we analyze the income obtained by the 

eight allocation strategies studied over the eight considered 

infrastructures. Figs. 6 to 8 report the average income per 
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machine, total income and income degradation, respectively, 

using four levels of service.  

Fig. 6 shows that for the given workloads we receive the 

best return on infrastructure per machine when 4 machines 

are used. When we increase the number of machines, the 

income generated by each machine is decreased. The 

average income generated by each machine for 4 machines 

scenario is about 3 times higher than in scenarios with 1, 64 

and 128 machines. 

Fig. 7 shows that the total income generated by each 

strategy is different when using 8, 16 and 32 machines. 

When 64 and 128 machines are used, strategies show similar 

results no matter what machine is used for allocation as in 

these cases, all jobs are accepted providing optimal income. 

For instance, in the scenario with m = 16, Max_eff , Max_s 

and Max_seff generate more income, but the difference to 

Min_e is less that 1%. 

Fig. 8 shows that the Min_e strategy that allocates jobs to 

the machine with minimum total power consumption 

computes schedules with lower income degradation for 8, 16 

and 32 machines. 

In scenarios with m = 1, 2, 64, and 128, the studied 

allocation strategies have negligible difference since in the 

case of m = 1, 2 there is only a small diversity of machines 

for the allocation. In the case of m = 64 and m = 128, almost 

all jobs are accepted regardless of the strategy we use 

because there are always available resources. For instance, 

in the 16 machines scenario, we see a clear difference 

among the studied methods.  

The allocation to the machine with minimum total power 

consumption Min_e has the best behavior in all scenarios. 

The second best strategy is MLp, having 17% higher 

degradation. Max_eff, Max_s, and Max_seff have about 75% 

degradation comparing with Min_e. The difference between 

them is less than 1%.  

 
Fig. 2 Performance ratio SSL-MM-hom 

 
Fig. 3 Performance ratio SSL-MM-het 

 
Fig. 4 Degradation of energy consumption. SSL-MM-hom 

 
Fig. 5 Degradation of energy consumption. SSL-MM-het 

7.2.2. Power consumption degradation 

In this subsection, we present an analysis of power 

consumption. Figs. 9 and 10 report the results obtained on 

the same scenarios presented in the previous subsection. Fig. 

9 shows the total power consumption and Fig. 10 shows the 

degradation of the power consumption. 

In Fig. 9, we see that the power consumption is an 

increasing function when increasing the number of 

machines. However, in the range from 32 to 128 machines, 

the consumption is almost the same for all studied 

heuristics. This means that all jobs are accepted and power 

consumption is not increased. The machines without 

workload are off. The strategy that allocates jobs to the 
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machine with lower total power consumption is about four 

times better than the strategy that assigns jobs to the fastest 

machine.  

From the results, we see that as we increase the number 

of service levels in the SLA, the power consumption is 

increased slightly and the degradation is a bit higher than in 

the scenarios with lower SLAs.  

The results on Fig. 10 demonstrate that the degradation in 

the scenario with 128 machines is decreased with respect to 

64 machines. With more machines, the strategies have more 

options for resource allocation, and, in overall, all strategies 

take advantage of this diversity. The Min_e strategy has the 

best behavior to minimize energy consumption. 

7.2.3. Mean degradation in performance analysis. 

In the previous subsections, we presented an analysis of the 

income and power consumption separately. Now, we are 

interested in finding the strategy that generates the best 

compromise between income and energy consumption. To 

perform this analysis, we use the technique of degradations 

and ranking, and performance profile described in Sections 

6.1 and 6.2.  

 
Fig. 6 Average income per machine using SLA with 4 service levels. 

 
Fig. 7 Total income using SLA with service levels. 

 
Fig. 8 Income degra dation using SLA with 4 service levels. 

 
Fig. 9 Total power consumption using SLA with 4 SLs 

 

Fig. 10 Degradation of the power consumption using SLA with 4 SLs 

 

Table 4 Degradations and ranking, SLA 4 
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FFit 0.59 1.52 1.06 5 4 4 

Max_s 0.60 2.32 1.46 7 6 6 

Max_eff 0.60 1.75 1.18 8 8 8 

Max_seff 0.60 2.20 1.40 6 7 7 

MCT_eff 0.59 1.61 1.10 3 5 5 

Random 0.59 1.30 0.94 4 3 3 

Min_e 0.54 0.84 0.69 1 1 1 

MLp 0.57 1.24 0.91 2 2 2 
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Table 4 reports the average degradation for a SLA with 

four SL for each set of experiments. The last three columns 

of the table contain the ranking of each strategy with respect 

to income, power, and their mean. Ranking-P is based on the 

income degradation. Ranking-E refers to the position in 

relation to the degradation of power consumption. Rank is 

the position based on the averaging both degradations.We 

see that the best strategy for resource allocation is to assign 

jobs to the machine that consumes less energy up to the 

moment of allocation (Min_e). This leads to better average 

income and lower power consumption. 
The good performance of this strategy is due to a load 

balancing between machines considering total power 

consumption. A machine can have lower power 

consumption due to various reasons: the machine may 

receive fewer loads than other ones; it may have better 

energy efficiency, or both. All situations cause load 

balancing and generate more income and less power 

consumption. 

The second best strategy, MLp, assigns jobs to the 

machine having less allocated jobs. It also intends to balance 

load but this balance is in relation to the assigned work. 

The analysis shows that if we have no information about 

the speed of the machines or their energy efficiency, it is 

better to allocate jobs to the machine that has fewer 

assignments. If we have information about speed and energy 

efficiency, the best option is assigning a job to the machine 

that has consumed less power at the time of the decision. 

7.2.4 Performance profile  

As mentioned in Section 6.1, conclusions based on the 

averages may have some negative aspects. To analyze 

effects of allowing a small portion of problem instances with 

large deviation to dominate the conclusions that are based 

on averages, we present performance profiles of our 

strategies.  

Fig. 11 shows the performance profiles according to 

income in the interval  7.2,...,1  to provide objective 

information for analysis of a test set. This figure displays the 

small discrepancies in the income on a substantial 

percentage of the problems. Min_e has the highest ranking 

and the highest probability of being the better strategy. The 

probability that it is the winner on a given problem within 

factors of 1.6 of the best solution is close to 0.7. If we 

choose being within a factor of 2 as the scope of our interest, 

then all strategies would suffice with probability 0.87. 

Fig. 12 shows the performance profiles according to 

power consumption in the interval  9,...,1 . It displays 

large discrepancies in the power consumption degradation 

on a substantial percentage of the problems. 

Min_e has the highest ranking and the highest probability 

of being the better strategy. If we choose being within a 

factor of 3 as the scope of our interest, the probability that it 

is the winner on a given problem is close to 1. Within a 

factor of 2 of the scope of our interest, it wins with 

probability 0.7.  

Fig. 13 shows the performance profiles of the 8 strategies 

by averaging two metrics: energy and income. The most 

significant aspect of Fig. 13 is that on this test set Min_e 

dominates other strategies: its performance profile is never 

below any other for all values of performance ratios. MLp is 

the second best strategy.  

7.3 Experimental scenario 3:  five SLAs 

In the previous subsection, we presented a detailed 

analysis of the scenario, where 4 different service levels are 

available for users. In this subsection, we compare five cases 

varying type of SLAs from SLA 1 with one service level to 

SLA 5 with five service levels. 

Fig. 14, 15, 16 show income, power, and their mean 

degradations for 8 allocation strategies, respectively, 

varying SLA from 1 to 5.  

Most significant aspect of these figures is that Min_e 

dominates other strategies: its degradation is lower for all 

SLAs. It shows better income and lower power 

consumption. 

Table 4 reports the degradations for SLAs with one, two, 

three four and five SLs, and their mean. 

 Rank-I, Rank-E, and Rank columns of the table 

contain the ranking of each strategy regarding to income, 

energy and their mean. Rank-I is based on the income 

degradation. Rank-E refers to the position in relation to the 

degradation of the power consumption. Rank is the 

position based on the averaging two degradations. 

We see that the average income degradation varies from 

0.43 to 0.62 while power consumption degradation has 

higher variation from 0.57 to 2.44.  

Again Min_e has a rank 1 in all test cases. 

8 Experimental validation: the bi-objective analysis. 

Our aim is to obtain a set of compromise solutions that 

represent a good approximation to the Pareto front. This is 

not formally the Pareto front as an exhaustive search of all 

possible solutions is not carried out, but rather serves as a 

practical approximation of a Pareto front. 

8.1 Solution space and Pareto fronts 

We compute a set of solutions approximating the Pareto 

front for each of 8 strategies: FFit, Max-s, Max-eff, Max-

seff, MCT-eff, Min-e, Rand, MLp, 5 SLAs, 8 machine 

configurations, and 30 workloads. Hence we obtain 

approximations of Pareto fronts considering 

8×5×8×30=9600 solutions. This two-dimensional solution 

space represents a feasible set of solutions that satisfy the 

problem's constraints. 

Fig. 17-18 show the solution sets and the Pareto fronts. 

Note that we address the problem of minimizing power 

consumption and maximization of the income while obeying 

QoS guarantees. For better representation, we convert it to 

the minimization of two criteria: degradation of both income 

and power consumption. 

Fig. 17 shows the solution space (two objectives) 

including 1200 solutions for each strategy. Each solution is 

represented by income degradation and power consumption 

degradation. They cover a wide range of values in terms of 
opE  degradation from 0 to 8, whereas values of V  

degradation are in the range from 0 to 1.8. 
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Fig. 18 shows the eight approximations of Pareto fronts 

generated by the studied strategies. They cover power 

consumption degradations from 0 to 1.8, and income 

degradations from 0 to 1.6.  

It can be seen that Min-e, MLp and FFit are located in the 

lower-left corner, being among the best solutions in terms of 

both objectives. They noticeably outperform MCT-eff.  

However, we should not consider only Pareto fronts. 

When many of the solutions are outside the Pareto front, the 

algorithm's performance is variable. This is the case of FFit: 

although the Pareto front is of high quality, many of the 

generated solutions are quite far from it, and, hence, a single 

run of the algorithm may produce significantly worse 

results. FFit solutions cover opE  degradations from 0 to 6, 

whereas Min-e solutions are in the range from 0 to 3.3 of 
opE  degradations.  

 

 

Fig. 11 Performance profile of the income, 8 strategies 

 

Fig. 12 Performance profile of the energy consumption, 8 strategies 

 
Fig. 13 Performance profile of the power consumption and income average, 

8 allocation strategies. 

 
Fig. 14. Average income degradation, varying SLA, 8 allocation strategies 

 
Fig. 15 Average power consumption degradation, varying SLA, 8 

allocation strategies 

 
Fig. 16 Mean degradation, varying SLA, 8 allocation strategies 
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Table 5 Degradations and Ranking, MSL-MM 
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SLA 1 

FFit 0.49 1.02 0.76 5 5 5 

SLA2 

FFit 0.55 1.29 0.92 5 5 5 

Max_s 0.50 1.43 0.97 7 8 8 Max_s 0.56 1.86 1.21 6 8 8 

Max_eff 0.50 1.08 0.79 6 6 6 Max_eff 0.56 1.40 0.98 8 6 6 

Max_seff 0.50 1.37 0.94 8 7 7 Max_seff 0.56 1.76 1.16 7 7 7 

MCT_eff 0.49 1.00 0.75 4 4 4 MCT_eff 0.54 1.28 0.91 4 4 4 

Random 0.49 0.88 0.68 3 3 3 Random 0.54 1.09 0.81 3 3 3 

Min_e 0.43 0.57 0.50 1 1 1 Min_e 0.47 0.68 0.58 1 1 1 

MLp 0.47 0.76 0.62 2 2 2 MLp 0.52 0.98 0.75 2 2 2 

SLA 3 

FFit 0.60 1.50 1.05 5 4 4 

SLA 4 

FFit 0.59 1.52 1.06 5 4 4 

Max_s 0.62 2.14 1.38 7 8 8 Max_s 0.60 2.32 1.46 7 6 6 

Max_eff 0.62 1.66 1.14 8 6 6 Max_eff 0.60 1.75 1.18 8 8 8 

Max_seff 0.62 2.03 1.33 6 7 7 Max_seff 0.60 2.20 1.40 6 7 7 

MCT_eff 0.60 1.51 1.06 4 5 5 MCT_eff 0.59 1.61 1.10 3 5 5 

Random 0.59 1.27 0.93 3 3 3 Random 0.59 1.30 0.94 4 3 3 

Min_e 0.53 0.84 0.68 1 1 1 Min_e 0.54 0.84 0.69 1 1 1 

MLp 0.57 1.19 0.88 2 2 2 MLp 0.57 1.24 0.91 2 2 2 

SLA 5 

FFit 0.60 1.58 1.09 5 4 4 

Mean 

FFit 0.57 1.38 0.98 5 4 4 

Max_s 0.61 2.44 1.53 7 6 8 Max_s 0.58 2.04 1.31 7 8 8 

Max_eff 0.61 1.85 1.23 8 8 6 Max_eff 0.58 1.55 1.06 8 6 6 

Max_seff 0.61 2.32 1.46 6 7 7 Max_seff 0.58 1.94 1.26 6 7 7 

MCT_eff 0.59 1.68 1.14 4 5 5 MCT_eff 0.56 1.42 0.99 4 5 5 

Random 0.59 1.36 0.97 3 3 3 Random 0.56 1.18 0.87 3 3 3 

Min_e 0.56 0.85 0.70 1 1 1 Min_e 0.51 0.76 0.63 1 1 1 

MLp 0.58 1.29 0.93 2 2 2 MLp 0.54 1.09 0.82 2 2 2 

 

The results of the Pareto front analysis indicate a more 

stable behavior of Min-e. As expected the energy waste is 

increasing with increasing income. For solutions with the 

best income (zero degradation), power consumption 

degradation is more than 1.4 for most of the strategies. Min-

e shows a better result, with a degradation value of 0.8. 

8.2. Set coverage analysis 

In this section, we use the set coverage metric described in 

Section 6.3 to compute the performance for the studied 

multi-objective scheduling strategies. Using this metric, two 

sets of non-dominated solutions can be compared to each 

other.  

Table 6 reports the SC results for each of the eight Pareto 

fronts. The rows of the table show the values  BA,SC  for 

the dominance of strategy A  over strategy B . The columns 

indicate  AB,SC , that is,  dominance of B over A. The last 

two columns show the average of  BA,SC  for row A  over 

column B , and ranking based on the average dominance. 

Similarly, the last two rows show average dominance B  

over A , and rank of the strategy in each column. We see 

that  SC Min e,B  dominates the fronts of the other 

strategies in the range 68%-93%, and 85% in average. 

 eMinASC ,  shows that Min-e is dominated by the fronts 

of other strategies in 23% in average.  

The ranking of strategies is based on the percentage of 

coverage. The higher ranking of rows implies that the front 

is better. The rank in columns shows that the smaller the 

average dominance, the better the strategy. According to the 

set coverage metric table, the strategy that has the best 

compromise between maximizing income and minimizing 

energy consumption is Min-e, followed by MLp and FFit on 

the second position. 
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Fig. 17 The solution sets 

 

Fig. 18 The Pareto fronts 

Table 6 Set coverage and ranking 
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FFit 1.00 0.92 0.92 0.92 0.93 0.40 0.39 0.26 0.68 2 

seMax-s 0.19 1.00 1.00 1.00 0.20 0.13 0.11 0.16 0.40 4 

Max-eff 0.19 1.00 1.00 1.00 0.20 0.13 0.11 0.16 0.40 4 

Max-seff 0.19 1.00 1.00 1.00 0.20 0.13 0.11 0.16 0.40 4 

MCT-eff 0.11 0.70 0.68 0.71 1.00 0.13 0.07 0.13 0.36 5 

Min-e 0.70 0.97 0.95 0.97 0.93 1.00 0.68 0.74 0.85 1 

Rand 0.26 0.95 0.92 0.95 0.90 0.33 1.00 0.26 0.65 3 

MLp 0.33 0.95 0.89 0.92 0.90 0.33 0.39 1.00 0.67 2 

Mean 0.28 0.93 0.91 0.92 0.61 0.23 0.27 0.27    

Ranking 3 7 5 6 4 1 2 2 
 

 

          

 

9 Conclusions  

In this paper, we analyze a variety of scheduling algorithms 

with different cloud configurations and workloads 

considering two objectives: provider income and power 

consumption. 

In our problem model, a user submits jobs to the service 

provider, which offers several levels of service. For a given 

service level the user is charged a cost per unit of execution 

time. In return, the user receives guarantees regarding the 

provided resources: lower service level – higher cost. The 

maximum response time (deadline) used as QoS constraints. 

Our experimental analysis on several cases of study 

results in several contributions: 

(a) We identify the problem of the resource allocation 

with several service levels and quality of service to make 

scheduling decisions with respect to job acceptance and two 

criteria optimization;  

(b) We analyze scenarios with homogeneous and 

heterogeneous machines of different configurations and 

workloads;  

(c) We provide a comprehensive experimental study of 

greedy acceptance algorithms with known worst case 

performance bound and 8 allocation strategies that take into 

account heterogeneity of the environment: knowledge free, 

energy-aware, and speed-aware;  

(e) To provide effective guidance in choosing a good 

strategy, we perform a joint analysis of two conflicting goals 

first based on the degradation in performance of each 

strategy under each metric; then based on the Pareto front 

and set coverage metric. 

(f) Simulation results presented in the paper reveal that in 

terms of minimizing power consumption and maximization 

of the provider income Min_e allocation strategy 

outperforms other algorithms. It dominates in almost all test 

cases. We conclude that the strategy is stable even under 

significantly different conditions. It provides minor 

performance degradation and copes with different demands. 

Min_e provides major dominance with a set coverage 

metric. We find that the information about the speed of 

machines does not help to improve significantly the 

allocation strategies. 
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(i) The final result suggests a simple allocation strategy, 

which requires minimal information and little computational 

complexity; nevertheless, it achieves good improvements in 

our objectives and provides quality of service guarantees. 

However, further study for multiple service classes is 

required to assess its actual efficiency and effectiveness. 

This will be subject of future work for better understanding 

of service levels, QoS and multi-objective optimization in 

IaaS clouds. 
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