
J. Grid Computing

DOI 10.1007/s10723-015-9340-0

Online Bi-Objective Scheduling for IaaS Clouds Ensuring

Quality of Service

Andrei Tchernykh Luz Lozano Uwe Schwiegelshohn

Pascal Bouvry Johnatan E. Pecero

Sergio Nesmachnow Alexander Yu. Drozdov

Received: November 2014 / Accepted 4 July 2015:

© Springer Science+Business Media B.V. 2015

Abstract. This paper focuses on a bi-objective experimental

evaluation of online scheduling in the Infrastructure as a

Service model of Cloud computing regarding income and

power consumption objectives. In this model, customers

have the choice between different service levels. Each

service level is associated with a price per unit of job

execution time, and a slack factor that determines the

maximal time span to deliver the requested amount of

computing resources. The system, via the scheduling

algorithms, is responsible to guarantee the corresponding

quality of service for all accepted jobs. Since we do not

consider any optimistic scheduling approach, a job cannot

be accepted if its service guarantee will not be observed

assuming that all accepted jobs receive the requested

resources. In this article, we analyze several scheduling

algorithms with different cloud configurations and

workloads, considering the maximization of the provider

income and minimization of the total power consumption of

a schedule. We distinguish algorithms depending on the type

and amount of information they require: knowledge free,

energy-aware, and speed-aware. First, to provide effective

guidance in choosing a good strategy, we present a joint

analysis of two conflicting goals based on the degradation in

performance. The study addresses the behavior of each

strategy under each metric. We assess the performance of

different scheduling algorithms by determining a set of non-

dominated solutions that approximate the Pareto optimal set.

We use a set coverage metric to compare the scheduling

algorithms in terms of Pareto dominance.

Andrei Tchernykh ∙ Luz Lozano

CICESE Research Center, Ensenada, Baja California, México, {chernykh,

llozano}@cicese.mx

Uwe Schwiegelshohn

TU Dortmund University, Dortmund, Germany,

uwe.schwiegelshohn@udo.edu

Pascal Bouvry ∙ Johnatan E. Pecero

University of Luxembourg, Luxembourg,

{Pascal.Bouvry, Johnatan.Pecero}@uni.lu

Sergio Nesmachnow

Universidad de la República, Uruguay, sergion@fing.edu.uy

Alexander Yu. Drozdov

 Moscow Institute of Physics and Technology,

alexander.y.drozdov@gmail.com

We claim that a rather simple scheduling approach can

provide the best energy and income trade-offs. This

scheduling algorithm performs well in different scenarios

with a variety of workloads and cloud configurations.

Keywords Cloud computing  Service Level Agreement 

Energy Efficiency  Multi-objective Scheduling  IaaS

1 Introduction

The implementation of a service-oriented paradigm in

computing leads to Service Level Agreements (SLAs). The

concurrent availability of different service levels in multi-

user systems must have a strong influence on job scheduling

since customers with better service levels expect preferred

attendance. To be attractive to a wide range of customers

providers want to accommodate different needs that are

different levels of service.

As a representative of present IaaS providers, we use

Amazon Web Services (AWS). An AWS-customer can

select one of several instances that differ in virtual CPUs,

RAM, and memory. In addition, the customer can add

additional services like network, data bases, and applications.

If a provider is running out a requested instance, he may

reject this request and provide an alternative offer. But in

order to avoid the risk of alienating the customer, he often

allocates a better instance at the price of the requested

instance. Being aware that some customers may get used to

this better service at low cost while others become annoyed

that they have to pay more for the same service than fellow

customers, providers want to avoid this voluntary upgrade

without a large amount of overprovisioning. Therefore,

efficient job scheduling is very important.

AWS gives a customer the choice between spot instances,

reserved instances and dedicated instances. These instances

represent different forms of the service level with respect to

the availability of the selected resources. In general, we can

state that service levels differ in the amount of computing

resources a customer is guaranteed to receive within a

requested (or negotiated) time, and the cost per resource unit.

SLAs can be extended to include provider and consumer

responsibilities, bonuses and penalties, availability,

conditions of services supporting, rules and exceptions,

excess usage thresholds and charges, payment and penalty

A. Tchernykh et al.

regulation, purchasing options, pricing policy, payment

procedure, security and privacy issues, etc. In our study, we

restrict ourselves to the SLA performance guarantees.

Clouds typically serve two types of workloads: interactive

service requests and batch jobs although we may distinguish

between different classes of batch jobs. In the IaaS service

model, providers usually do not charge for individual jobs

but for resource reservations regardless whether the customer

uses the provided resources or not. Hence, a provider can

only accept a job if he is able to deliver the guaranteed

amount of resources. Therefore, the scheduling problem

resembles deadline scheduling since a provider guarantees to

observe the quality of service of a request once the job is

accepted. We allow our scheduling algorithms to upgrade a

request to use resources with a better performance, without

increasing the cost charged to the customer (voluntary

upgrade).

Since the paper is an extension of our previous work, we

briefly summarize our relevant previous publications. Based

on models in hard real-time scheduling [14], Schwiegelshohn

and Tchernykh [4] introduced a simple model for service

level based job allocation and scheduling, where each service

level is described by a slack factor and a price for a

processing time unit. After a job has been submitted, the

provider must decide immediately and irrevocably whether

he accepts or rejects the job. We have analyzed single (SM)

and parallel (PM) machine models subject to jobs with single

(SSL) and multiple (MSL) service levels and use competitive

analysis to determine the worst-case ratio between a provider

income when applying a given algorithm, and the optimal

income. We provide such worst case performance bounds for

four greedy acceptance algorithms SSL-SM, SSL-PM, MSL-

SM, MSL-PM, and two restricted acceptance algorithms

MSL-SM-R, and MSL-PM-R.

To show the practicability and competitiveness of these

algorithms, Lezama et al. [3] and Tchernykh et al. [19, 21]

presented simulation studies that include several test cases.

We use workloads based on real production traces of

heterogeneous HPC systems to demonstrate practical

relevance of the results. Based on these studies we show that

the rate of rejected jobs, the number of job interruptions, and

the provider income strongly depend on the slack factor. In

practice, the provider sets the slack factor the customer

accepts or rejects it. Therefore, the slack factor depends on

market constraints.

To study certain aspects of the problem, Tchernykh et al.

[19] transformed the multi-objective problem into a single-

objective one through the method of objective aggregation,

assuming equal importance of each metric. First, we evaluate

the degradation in performance of each strategy under each

metric relative to the best performing strategy for the metric

considering four service levels. Then, we average these

values, and rank the strategies. The degradation approach

provides the mean percentage of the degradation but it does

not show the negative effects of allowing a small portion of

the results with large deviation to dominate the conclusions

based on averages. To analyze those possible negative effects

and to help with the interpretation of the data generated by

the benchmarking process, we present performance profiles

of the strategies.

Later, Tchernykh et al. [21] determined Pareto optimal

solutions for the same problem. We assess the performance

of different strategies by comparing algorithms in terms of

Pareto dominance with the help of a set coverage metric.

In this paper, we present an exhaustive experimental study

of online scheduling strategies on a Cloud. We distinguish

eight strategies depending on the type and amount of

information they require. We analyze scheduling strategies in

three groups: knowledge-free; energy-aware; and speed-

aware. We apply these strategies in the context of executing

real HPC workloads. We extend our preliminary results

presented in previous conference articles [19, 21] considering

up to twenty service levels in order to provide a

comprehensive performance comparison.

The paper is structured as follow. The next section

reviews related works on SLAs and energy-aware

scheduling. Section 3 presents the problem definition, while

the proposed schedulers are described in Section 4. Section 5

provides details of the experimental setup. Section 6

describes the methodology used for the analysis.

Experimental validation is reported in Section 7, including a

single service level, four service levels and the more general

multiple service level-multiple machine (MSL-MM) with

five different SLAs and up to five service levels. The

experimental analysis of the proposed bi-objective schedulers

when solving a benchmark set of different problem instances

and scheduling scenarios is reported in Section 8, where

practical approximations of Pareto fronts and their

comparison using a set coverage metric are presented.

Finally, Section 9 concludes the paper and presents the main

lines for future work.

2 Related work

Research on SLAs in Cloud computing has addressed the

usage of SLAs for resource management and admission

control techniques, automatic negotiation protocols,

economic aspects associated with the usage of SLAs for

service provision, and the incorporation of SLA into the

Cloud architecture, etc. However, these results are not

relevant for our study. Little is known about efficiency of

scheduling solutions that consider SLA.

To optimize power consumption, three main policies are

used [1, 2]. Dynamic component deactivation switches off

parts of the computer system that are not utilized. Dynamic

Voltage Scaling (DVS) and Dynamic Voltage and Frequency

Scaling (DVFS) slow down the speed of CPU processing.

Explicit approaches (e.g. SpeedStep by Intel, or Optimized

Power Management by AMD) use hardware-embedded

energy saving features. While the last two policies are

designed to reduce the power consumption of one resource

individually, a variant of the first approach is also applicable

for a whole system consisting of geographically distributed

resources.

Therefore, Tchernykh et al. [5] explored the benefits this

approach when discuss power optimization for distributed

systems. They turn off/on (activate/deactivate) servers so that

only the minimum number of servers required to execute a

given workload are kept active. A similar concept is used by

Online Bi-Objective Scheduling for IaaS Clouds with Ensuring Quality of Service

Raycroft et al. [6] who analyzed the effects of virtual

machine allocation on power consumption.

DVS/DVFS energy-aware approaches have been

commonly addressed in literature, from early works like the

one by Khan and Ahmad [7] using a cooperative game

theory to schedule independent jobs on a DVS-enabled grid

to minimize makespan and energy. Lee and Zomaya [8]

studied a set of DVS-based heuristics to minimize the

weighted sum of makespan and energy. Later, these results

were improved by Mezmaz et al. [9] by proposing a parallel

bi-objective hybrid genetic algorithm (GA). Pecero et al. [10]

studied two-phase bi-objective algorithms using a Greedy

Randomized Adaptive Search Procedure (GRASP) that

applies a DVS-aware bi-objective local search to generate a

set of Pareto-optimal solutions. Lindberg et al. [11] proposed

six greedy algorithms and two GAs to optimize makespan

and energy subject to deadline constraints and memory

requirements. Using these results on DVS/DVFS, we suggest

an abstract energy model that does not only use an on/off

state for a server. Similar to the studies mentioned above, we

also consider bi-objective optimization but apply different

methods to determine non-dominated solutions.

Our results extend the results of Nesmachnow et al. [12]

who studied a Max-Min approach by applying twenty fast

list scheduling offline algorithms to solve the bi-objective

problem of optimizing makespan and power consumption.

These results demonstrate that accurate schedules with

different makespan/energy trade-offs can be obtained with

the two-phase optimization model. Using the same approach,

Iturriaga et al. [13] use the same approach and showed that a

parallel multi-objective local search based on Pareto

dominance outperforms deterministic heuristics based on the

traditional Min-Min strategy. But different from the older

studies, we do not use the makespan objective to characterize

computer performance but the total amount of accepted

resource requests.

In another study, Nesmachnow et al. [25] focused on

multiobjective planning of cloud datacenters considering

SLAs and power profiles. Their experimental analysis

performed on realistic green (solar powered) datacenters

demonstrates that accurate schedules, accounting for

different trade-offs between power, temperature and QoS,

can be computed by combining a traditional NSGA-II

multiobjective evolutionary algorithm with a backfilling

technique to deal with sleeping/switched off computing

resources. In our study, we do not consider temperature as a

separate objective since it is a constraint and has a direct

influence on energy consumption. In addition, we consider

the impact of system knowledge on our objectives.

3 Problem definition

We follow the system model and power consumption

model presented by Tchernykh et al. [19, 21]. We are

interested in providing QoS guarantees and optimizing both

the provider income and power consumption.

3.1 Job model

Let 1 2 l kSL= SL ,SL ,…,SL ,…,SL   be a set of service levels

offered by SLA. For a given
l

SL , the job jJ has the

performance requirement l

js of the request that is

guaranteed by providing processing capability of VM

instances, and charged with cost l

ju per execution time unit

depending on the urgency of the submitted job. This

urgency is denoted by a slack factor of the job 1l

jf .

  maxmax

l

juu  denotes the maximum cost for all kl ..1

and nj ..1 . The total number of jobs submitted to the

system is rn .

Each job jJ is described by a tuple  , , , l

j j j jr w d SL

containing the release date jr , the amount of work jw that

represents the computing load of the application to be

completed before the required response time, the deadline

jd , and the service level SLSLl

j  . Let
l

jjj sw=p / be the

guaranteed time that the system will spend for processing of

the job before its deadline according to the service level
l

jSL . Let jd be the latest time that the system would have

to complete the job jJ in case it is accepted. This value is

calculated at the release of the job as l

j j j jd = r + f p . The

maximum deadline is  jjmax dmax=d . When the job is

released, characteristics of the job become known.

The income that the system will obtain for the execution

of job jJ is calculated as l

j ju p . Once the job is released,

the provider has to decide, before any other job arrives,

whether the job is accepted or not.

In order to accept the job jJ , the provider should ensure

that some machine in the system is capable to complete it

before its deadline. In the case of acceptance, later submitted

jobs cannot cause job jJ to miss its deadline.

Once a job is accepted, the scheduler uses some rule to

schedule the job. Finally, the set of accepted jobs

 nJ,…,J,J=J 21 is a subset of released jobs, where rn n

is the number of jobs that are accepted.

3.2 Machine model

We consider a set of m heterogeneous machines

 1 2 mM = M ,M ,…,M . Each machine iM is described by a

tuple (ii eff,s) indicating its relative processing speed is

and its energy efficiency ieff .

At time t , only a subset of all machines can accept a job.

Let   1 2

a

am
M t = M ,M ,…,M 

 
 be such a set of admissible

machines. This set is defined for each job as a subset of

available machines that can execute this job without

deadline violation, and can guarantee computing power
l

js

A. Tchernykh et al.

for processing. Machines that have processing speed less

than the speed guaranteed by the SLA cannot accept the job.

The value is is conservatively selected such that the

speed-ups of all target applications exceed is . Hence, users

receive the same guarantees whatever processors are used.

Deadlines are calculated based on the service level and

cannot be changed, and guaranteed processing time is not

violated by slower processing. Cmax denotes the makespan of

the schedule.

3.3 Energy model

In the energy model, we assume that the power

consumption  tPi of machine iM at time t consists of a

constant part idleP that denotes the power consumed by

machine iM in idle state, and a variable part workP that

depends on the workload:       idle work

i i iP t = o t P +w t P ,

where   1=toi if the machine is ON at time t otherwise

  0=toi , and   1=twi if the machine is busy otherwise

  0=twi . The total power consumed by the cloud system is

the sum of power consumed during

operation:
max

0
()

C
op op

t
E P t dt


  , with

1 1
() () () (())

m mop iddle work

i i ii i
P t P t o t P w t P

 
     .

3.4 Optimization criteria

In order to evaluate the system performance, we use a series

of metrics that are useful for systems with SLs , where

traditional measures such as makespan become irrelevant.

For this kind of system, the metrics must allow the provider

to measure the performance of the system in terms of

parameters that helps him to establish utility margins as well

as user satisfaction for the service.

Two criteria are considered in the analysis: Maximization

of the service provider income and minimization of the

power consumption opE . The income is defined as

 
1

n l

j jj
V = u p


 . Due to the definition of the problem, we

have to assure a benefit for the service provider. To show

how the income generated by our algorithm gets closer to

the value obtained by an optimal income  *AV we use the

competitive factor ρ . The competitive factor ρ is defined

as:
 
 

1

*
1

n l

j jj
u p

ρ=
V A







 where the optimal income  *AV

is approximated by an upper bound

 
*

1

n
r

max j max

j=

V A u min p ,d m
  

    
 
 .

To derive an upper bound of the income we consider two

possible cases. The maximum income can be archived if all

released jobs are processed, or if accepted jobs are

processed on all machines without idle time until the

maximum deadline. In both cases jobs have the maximum

price per time unit.

The first term of  *AV


 is the sum of the processing

times of all released jobs multiplied by the maximum price

per unit execution of all available SLAs. The second term is

the maximum deadline of all released jobs multiplied by the

maximum price per unit execution value and the number of

machines in the system. Due to our admission control

policy, the system does not execute jobs if their deadlines

cannot be reached. Therefore, this second term is also an

upper bound of the total processing time of the system.

The optimal income is greater than or equal to the upper

bound:    
* *

V A V A


 , and a lower bound for the

competitive factor ̂  is obtained by using  
*

V A


.

4 Scheduling algorithms

This section describes the scheduling approach and the

proposed energy-aware SLA scheduling methods.

4.1 Scheduling approach

We use a two-level scheduling approach as shown in Fig. 1

[19, 22, 23, 26]. At the upper level, the system verifies

whether a job can be accepted or not using a Greedy

acceptance policy. If the job is accepted then the system

selects a machine from the set of admissible machines for

executing the job on the lower level.

Fig. 1 Two-level scheduling approach using acceptance policies (upper
level) and allocation strategies (lower level)

4.2 Higher-level acceptance policies

We use a greedy higher-level acceptance policy. It is based

on the Earliest Due Date (EDD) algorithm, which gives

priority to jobs according to their deadlines. When a job jJ

arrives to the system, in order to determine whether to

accept or reject it, the system searches for the set of

Online Bi-Objective Scheduling for IaaS Clouds with Ensuring Quality of Service

machines capable of executing job jJ before its deadline,

assuring that no jobs in the machine will miss their

deadlines. If the set of available machines is not empty

  1a

jM r  job jJ is accepted otherwise it is rejected.

This completes the first stage of scheduling.

We use the preemptive EDD algorithm for each machine

separately to determine the schedule for this machine since

this algorithm is easy to apply and yields an optimal

solution for the 1 | prmp,
jr ,online | Lmax problem. In

general, the lateness
jL of job jJ is defined to be

 max , 0j jc d  . Then, we have
max max{ }jL L .

Remember that for all machine schedules in our problems,

max 0L  must hold as no job can be late. Furthermore, the

preemptive EDD algorithm produces a non-delay (greedy)

schedule and therefore does not delay the use of resources to

the future when yet unknown jobs may need them. With

preemptive EDD we verify that all already accepted jobs

with a deadline greater than the deadline of the incoming job

will be completed before their deadline.

4.3 Lower level allocation strategies

The machine for job allocation can be determined by taking

into account different criteria. In this work, we study eight

allocation strategies (see Table 1). They are characterized by

the type and the amount of information used for allocation

decision.

We distinguish two levels of available information. In

Level 1, the job execution time, the speed of machines, and

the acceptance policy are assumed to be known. In Level 2,

in addition, we know the machine energy efficiency and the

energy consumed by executing a job.

Table 1 summarizes the details of the allocation strategies

used in this work. We categorize the proposed methods in

three groups: i) knowledge-free, with no information about

applications and resources [5, 17, 19]; ii) energy-aware,

with power consumption information; and iii) speed-aware

with speed of machines information.

5 Experimental setup

This section presents the experimental setup, including

workload and scenarios, and describes the methodology

used for the analysis.

All experiments are performed using the grid scheduling

simulator tGSF (Teikoku Grid Scheduling Framework) [28].

tGSF is a standard trace based simulator that is used to study

grid resource management problems. We have extended

Teikoku to include our algorithms using the java (JDK

7u51) programming language.

5.1 Workloads

We evaluate the performance of our strategies using traces

of real HPC jobs obtained from the Parallel Workloads

Archive [15], and the Grid Workload Archive [16].

These workloads are suitable for assessing the system

because our IaaS model with multiple heterogeneous

parallel machines is intended to execute jobs traditionally

executed on Grids and parallel machines.

The performance evaluation under realistic workload

conditions is essential. The workloads include nine traces

from: DAS2-University of Amsterdam, DAS2–Delft

University of Technology, DAS2–Utrecht University,

DAS2–Leiden University, KHT, DAS2–Vrije University

Amsterdam, HPC2N, CTC, and LANL. The main details of

the considered sites are reported on Table 2. Further details

about the logs and workloads can be found in [15] and [16].

It is well known that the demand of jobs is not equally

distributed over the time and varies with the time of the day

and the day of the week. Moreover, each individual log

shows a different distribution. In addition, they are recorded

in different time zones. Therefore, we need normalization of

the used workloads by shifting the workloads by a certain

time interval to represent a more realistic setup. We

transform the workloads so that all traces begin at the same

weekday and at the same time of day. To this end, we

remove all jobs until the first Monday at midnight. Note that

the alignment is related to the local time, hence the time

differences corresponding to the original time zones are

maintained.

We consider time-zone normalization, profiled time

intervals normalization, and invalid jobs filtering. Several

filters are applied to remove certain jobs: submit time < 0;

run time ≤ 0; number of allocated processors ≤ 0; requested

time ≤ 0; user ID ≤ 0; status = 0, 4, 5 (0 = job failed; 4 =

partial execution, job failed; 5 = job was cancelled, either

before starting or during run).

5.2 Scenarios

For all scenarios, we define the number of machines and

number of SLs, which we use in the experimental study. We

consider eight infrastructure sizes with the number of

machines being powers of 2 from 1 to 128. It does not

exactly match all machines on which the workloads are

recorded, and in some cases may cause artifacts in the single

run. To obtain valid statistical values, 30 experiments of 7

days are simulated.

The scenarios have the following details: workload of

seven days; greedy acceptance policy on the higher level;

heterogeneous machines; eight infrastructure sizes, 20 SLs;

and the eight lower level allocation heuristics described in

Table 1. The data in Table 2 show speed, energy efficiency

and power consumption of the machines obtained from their

specifications. We see that the speed is in the range [18.6,

481], energy efficiency is in [0.89, 1.75], power consumption

is in [17.8, 58.9] for idleP , and in [26, 66] for workP . These

data we use for our experiments.

A. Tchernykh et al.

Table 3 presents different SLAs. SLA i contains i th

service levels. Each service level is associated with a price

per unit of job execution time and a slack factor that

determines the maximal time span to deliver the requested

amount of computing resources.

6 Methodology used for the analysis

Two criteria are considered in the analysis: income V and

power consumption opE . First, we simplify the problem to

a single objective problem through the method of objective

weighted aggregation. There are various ways to model

preferences, for instance, they can be given explicitly by

specifying the importance of every criterion or a relative

importance between criteria. This can be done by a

definition of criteria weights or criteria ranking by their

importance. To this end, a degradation-in-performance

method is applied. Second, we use a multi-objective

optimization approach that yields a set of non-dominated

solutions that approach a Pareto optimal set is considered.

6.1 Degradation in performance

In order to provide effective guidance in choosing the best

strategy, we perform a joint analysis of two metrics

according to the mean degradation methodology proposed in

Tsafrir et al. [24], and applied for scheduling in [17, 18, 19].

First, we evaluate the degradation in performance

(relative error) of each strategy under each metric. This is

done relative to the best performing strategy for the metric:

100)1( with
strategy metric value

best found metric value
  .

We average these values and rank the strategies. The best

strategy with the lowest average performance degradation

has rank 1. Note that we try to identify strategies which

perform reliably well in different scenarios; that is, we try to

find a compromise that considers all of our test cases.

Table 1 Allocation strategies

Type Strategy Level Description

K
n

o
w

le
d

g
e

F
re

e

Rand 1 allocates job j to a suitable machine randomly selected using a uniform distribution in the range  1..m .

FFit 1 allocates job j to the first machine available and capable to execute it.

MLp 1 allocates job j to the machine with the least load at time jr :  min in ,

E
n

er
g

y

aw
ar

e

Max-eff 2 allocates job j to the machine with largest energy efficiency  max ieff

Min-e 2 allocates job j to the machine with minimum total power consumption at time jr :   1
min

jr op

it
P t



MCT-eff 2

allocates job j to the machine with best ratio between completion time and energy efficiency  /i

max imin C eff , with

 maxi i

max kc = c and
i

kc being the makespan and completion time of job k in machine i, respectively

S
p

ee
d

aw
ar

e Max-seff 2 allocates job j to the  max i is eff ,

Max-s 2 allocates job j to the fastest machine:  max is

Table 2 Experimental setup

Site Procs
Energy efficiency

MFLOPS/W

Speed

GFLOPS
Log #Jobs #User

IdleP WorkingP

DAS2—University of Amsterdam 64 17.8 35.35 1.36 126

Gwa-t-1-anon_jobs-

reduced.swf
1124772 333

DAS2—Delft University of Technology 64 17.8 35.35 1.36 126

DAS2—Utrecht University 64 17.8 35.35 1.36 126

DAS2—Leiden University 64 17.8 35.35 1.36 126

KTH—Swedish Royal Institute of Technology 100 17.8 26 1.75 18.6

DAS2—Vrije University Amsterdam 144 17.8 35.35 1.32 230 KTH-SP2-1996-2.swf 28489 204

HPC2N—HPC Center North, Sweden 240 58.9 66 0.89 481 HPC2N-2002-1.1-cln.swf 527371 256

CTC—Cornell Theory Center 430 17.8 26 1.64 88.4 CTC-SP2-1996-2.1-cln.swf 79302 679

LANL—Los Alamos National Lab 1024 24.7 31 1.45 65.4
LANL-CM5-1994-3.1-
cln.swf

201387 211

Table 3 Multiple service levels and corresponding stretch factors

SLA Stretch factor

1
1SL →

1 1f =

2
1SL → 1 1f = ,

2SL → 2 2f =

3
1SL → 1 1f = ,

2SL → 2 2f = ,
3SL → 3 3f =

… …

20
1SL → 1 1f = ,

2SL → 2 2f = ,...,
20SL → 20 20f =

For example, the rank of the strategy may be neither the

same for all metrics nor for all scenarios. We present metric

degradation averages to evaluate performance of the

strategies and show if some strategies tend to dominate

results. The degradation approach provides the mean values.

To eliminate the influence of a small portion of data with

large deviation on the benchmarking process, and help with

Online Bi-Objective Scheduling for IaaS Clouds with Ensuring Quality of Service

the interpretation of the data, we present performance

profiles of our strategies.

6.2 Performance profile

The performance profile ()  is a non-decreasing,

piecewise constant function that presents the probability that

a ratio  is within a factor  of the best ratio [20]. The

function)( is the cumulative distribution function.

Strategies with large probability)( for small  will be

preferred.

6.3 Bi-objective analysis

Multi-objective optimization usually finds a set of solution

known as a Pareto optimal set [27]. One solution may

represent a very good solution concerning energy

consumption while another solution may be a very good

solution with respect to the income.

 The goal is to choose the most adequate solution and

obtain a set of compromise solutions that represent a good

approximation to the Pareto front. Two important

characteristics of a good multiobjective technique are

convergence to the Pareto front and diversity to sample the

front as fully as possible. A solution is Pareto optimal if no

other solution improves it in terms of all objective functions.

Any solution not belonging to the front can be considered of

inferior quality to those that are included. The selection

between the solutions included in the Pareto front depends

on the system preference. If one objective is considered

more important than the other one then preference is given

to those solutions that are near-optimal in the preferred

objective, even if values of the secondary objective are not

among the best obtained.

 Often, results fom multi-objectives problems are

compared via visual observation of the solution space. A

more formal and statistical approach uses a set coverage

metric [20]: given two sets of solutions A and B, the metric

SC(A,B) calculates the proportion of solutions in B, which

are weakly dominated by solutions of A:

 
{ | : }b B; a A a b

SC A,B
B

   


A metric value SC(A,B) = 1 means that all solutions of B

are dominated by A, whereas SC(A,B) = 0 means that no

member of B is dominated by A. This way, the larger the

value of SC(A,B), the better the Pareto front A with respect to

B. Since the dominance operator is not symmetric, SC(A,B)

is not necessarily equal to 1SC(A,B), and both SC(A,B) and

SC(B,A) have to be computed for understanding how many

solutions of A are covered by B and vice versa.

7 Experimental validation: degradation in performance.

This section reports the experimental analysis of the

proposed schedulers regarding performance degradation.

We study three scenarios: single service level, four service

levels, and the more general multiple service level-multiple

machine, with five different SLAs and up to five service

levels.

7.1 Experimental scenario 1: single service level

Three case-studies are reported: i) in the Case 7.1.1, we use

one SL for all jobs. We vary SL from 1 to 20 to compare our

algorithms with different SLs, and with worst case bound

found on theoretical analysis; ii) in the Case 7.1.2, for a

more detail analysis, we restrict ourself to the SLA 4, where

each job can have one of four SL from the set
1 4SL= SL ,…,SL   with slack factors 1 41, 4f = …, f = , and

iii) in the Case 7.1.3, we present a more comprehensive

study varying SLAs from 1 to 5, first considering

degradation of the income and energy consumption, for each

SLA independently, then their means and ranking.

7.1.1 Single service level-multiple machines

Fig. 2 presents the competitive factor  in a homogeneous

environment varying stretch factor f. We see that increasing

deadlines for all jobs reduces total income but increases the

flexibility of the scheduler to build schedules closed to the

optimal income. With f = 20 the competitive factors are

close to the optimal. This happens when f becomes large

enough to create a significant difference between job

deadlines and their processing times. For the scenario with

m=64, the competitive factor increases from 8.0ρ with

1f to 1ρ with 5f .

Fig. 3 presents ρ with varying f in a heterogeneous

environment. We see the same tendency of increasing ρ

with increasing f, however, with a higher variation.

Fig. 4 and 5 show the degradation of energy consumption in

homogeneous and heterogeneous environments.

Degradation increases when f grows. We clearly see that

heterogeneity degrades performance slightly more than

twice in energy consumption. In a homogeneous scenario,

the strategies perform almost identically, while the

heterogeneous scenario degrades performance with more

variance.

7.2. Experimental scenario 2: four service levels

All users use a SLA with four service levels with

corresponding slack factors 1 41, 4f = …, f = .

We report four studies: i) in Case 7.2.1 we analyze the

income degradation; ii) in Case 7.2.2 we study the power

consumption degradation; iii) in Case 7.2.3 we study the

mean degradation in performance; and iv) in Case 7.2.4 we

show an analysis of the performance profile.

7.2.1. Income degradation

In this subsection we analyze the income obtained by the

eight allocation strategies studied over the eight considered

infrastructures. Figs. 6 to 8 report the average income per

A. Tchernykh et al.

machine, total income and income degradation, respectively,

using four levels of service.

Fig. 6 shows that for the given workloads we receive the

best return on infrastructure per machine when 4 machines

are used. When we increase the number of machines, the

income generated by each machine is decreased. The

average income generated by each machine for 4 machines

scenario is about 3 times higher than in scenarios with 1, 64

and 128 machines.

Fig. 7 shows that the total income generated by each

strategy is different when using 8, 16 and 32 machines.

When 64 and 128 machines are used, strategies show similar

results no matter what machine is used for allocation as in

these cases, all jobs are accepted providing optimal income.

For instance, in the scenario with m = 16, Max_eff , Max_s

and Max_seff generate more income, but the difference to

Min_e is less that 1%.

Fig. 8 shows that the Min_e strategy that allocates jobs to

the machine with minimum total power consumption

computes schedules with lower income degradation for 8, 16

and 32 machines.

In scenarios with m = 1, 2, 64, and 128, the studied

allocation strategies have negligible difference since in the

case of m = 1, 2 there is only a small diversity of machines

for the allocation. In the case of m = 64 and m = 128, almost

all jobs are accepted regardless of the strategy we use

because there are always available resources. For instance,

in the 16 machines scenario, we see a clear difference

among the studied methods.

The allocation to the machine with minimum total power

consumption Min_e has the best behavior in all scenarios.

The second best strategy is MLp, having 17% higher

degradation. Max_eff, Max_s, and Max_seff have about 75%

degradation comparing with Min_e. The difference between

them is less than 1%.

Fig. 2 Performance ratio SSL-MM-hom

Fig. 3 Performance ratio SSL-MM-het

Fig. 4 Degradation of energy consumption. SSL-MM-hom

Fig. 5 Degradation of energy consumption. SSL-MM-het

7.2.2. Power consumption degradation

In this subsection, we present an analysis of power

consumption. Figs. 9 and 10 report the results obtained on

the same scenarios presented in the previous subsection. Fig.

9 shows the total power consumption and Fig. 10 shows the

degradation of the power consumption.

In Fig. 9, we see that the power consumption is an

increasing function when increasing the number of

machines. However, in the range from 32 to 128 machines,

the consumption is almost the same for all studied

heuristics. This means that all jobs are accepted and power

consumption is not increased. The machines without

workload are off. The strategy that allocates jobs to the

Online Bi-Objective Scheduling for IaaS Clouds with Ensuring Quality of Service

machine with lower total power consumption is about four

times better than the strategy that assigns jobs to the fastest

machine.

From the results, we see that as we increase the number

of service levels in the SLA, the power consumption is

increased slightly and the degradation is a bit higher than in

the scenarios with lower SLAs.

The results on Fig. 10 demonstrate that the degradation in

the scenario with 128 machines is decreased with respect to

64 machines. With more machines, the strategies have more

options for resource allocation, and, in overall, all strategies

take advantage of this diversity. The Min_e strategy has the

best behavior to minimize energy consumption.

7.2.3. Mean degradation in performance analysis.

In the previous subsections, we presented an analysis of the

income and power consumption separately. Now, we are

interested in finding the strategy that generates the best

compromise between income and energy consumption. To

perform this analysis, we use the technique of degradations

and ranking, and performance profile described in Sections

6.1 and 6.2.

Fig. 6 Average income per machine using SLA with 4 service levels.

Fig. 7 Total income using SLA with service levels.

Fig. 8 Income degra dation using SLA with 4 service levels.

Fig. 9 Total power consumption using SLA with 4 SLs

Fig. 10 Degradation of the power consumption using SLA with 4 SLs

Table 4 Degradations and ranking, SLA 4

S
tr

at
eg

y

In
co

m
e

E
n

er
g

y

M
ea

n

R
an

k
 I

R
an

k
 E

R
an

k

FFit 0.59 1.52 1.06 5 4 4

Max_s 0.60 2.32 1.46 7 6 6

Max_eff 0.60 1.75 1.18 8 8 8

Max_seff 0.60 2.20 1.40 6 7 7

MCT_eff 0.59 1.61 1.10 3 5 5

Random 0.59 1.30 0.94 4 3 3

Min_e 0.54 0.84 0.69 1 1 1

MLp 0.57 1.24 0.91 2 2 2

A. Tchernykh et al.

Table 4 reports the average degradation for a SLA with

four SL for each set of experiments. The last three columns

of the table contain the ranking of each strategy with respect

to income, power, and their mean. Ranking-P is based on the

income degradation. Ranking-E refers to the position in

relation to the degradation of power consumption. Rank is

the position based on the averaging both degradations.We

see that the best strategy for resource allocation is to assign

jobs to the machine that consumes less energy up to the

moment of allocation (Min_e). This leads to better average

income and lower power consumption.
The good performance of this strategy is due to a load

balancing between machines considering total power

consumption. A machine can have lower power

consumption due to various reasons: the machine may

receive fewer loads than other ones; it may have better

energy efficiency, or both. All situations cause load

balancing and generate more income and less power

consumption.

The second best strategy, MLp, assigns jobs to the

machine having less allocated jobs. It also intends to balance

load but this balance is in relation to the assigned work.

The analysis shows that if we have no information about

the speed of the machines or their energy efficiency, it is

better to allocate jobs to the machine that has fewer

assignments. If we have information about speed and energy

efficiency, the best option is assigning a job to the machine

that has consumed less power at the time of the decision.

7.2.4 Performance profile

As mentioned in Section 6.1, conclusions based on the

averages may have some negative aspects. To analyze

effects of allowing a small portion of problem instances with

large deviation to dominate the conclusions that are based

on averages, we present performance profiles of our

strategies.

Fig. 11 shows the performance profiles according to

income in the interval  7.2,...,1 to provide objective

information for analysis of a test set. This figure displays the

small discrepancies in the income on a substantial

percentage of the problems. Min_e has the highest ranking

and the highest probability of being the better strategy. The

probability that it is the winner on a given problem within

factors of 1.6 of the best solution is close to 0.7. If we

choose being within a factor of 2 as the scope of our interest,

then all strategies would suffice with probability 0.87.

Fig. 12 shows the performance profiles according to

power consumption in the interval  9,...,1 . It displays

large discrepancies in the power consumption degradation

on a substantial percentage of the problems.

Min_e has the highest ranking and the highest probability

of being the better strategy. If we choose being within a

factor of 3 as the scope of our interest, the probability that it

is the winner on a given problem is close to 1. Within a

factor of 2 of the scope of our interest, it wins with

probability 0.7.

Fig. 13 shows the performance profiles of the 8 strategies

by averaging two metrics: energy and income. The most

significant aspect of Fig. 13 is that on this test set Min_e

dominates other strategies: its performance profile is never

below any other for all values of performance ratios. MLp is

the second best strategy.

7.3 Experimental scenario 3: five SLAs

In the previous subsection, we presented a detailed

analysis of the scenario, where 4 different service levels are

available for users. In this subsection, we compare five cases

varying type of SLAs from SLA 1 with one service level to

SLA 5 with five service levels.

Fig. 14, 15, 16 show income, power, and their mean

degradations for 8 allocation strategies, respectively,

varying SLA from 1 to 5.

Most significant aspect of these figures is that Min_e

dominates other strategies: its degradation is lower for all

SLAs. It shows better income and lower power

consumption.

Table 4 reports the degradations for SLAs with one, two,

three four and five SLs, and their mean.

 Rank-I, Rank-E, and Rank columns of the table

contain the ranking of each strategy regarding to income,

energy and their mean. Rank-I is based on the income

degradation. Rank-E refers to the position in relation to the

degradation of the power consumption. Rank is the

position based on the averaging two degradations.

We see that the average income degradation varies from

0.43 to 0.62 while power consumption degradation has

higher variation from 0.57 to 2.44.

Again Min_e has a rank 1 in all test cases.

8 Experimental validation: the bi-objective analysis.

Our aim is to obtain a set of compromise solutions that

represent a good approximation to the Pareto front. This is

not formally the Pareto front as an exhaustive search of all

possible solutions is not carried out, but rather serves as a

practical approximation of a Pareto front.

8.1 Solution space and Pareto fronts

We compute a set of solutions approximating the Pareto

front for each of 8 strategies: FFit, Max-s, Max-eff, Max-

seff, MCT-eff, Min-e, Rand, MLp, 5 SLAs, 8 machine

configurations, and 30 workloads. Hence we obtain

approximations of Pareto fronts considering

8×5×8×30=9600 solutions. This two-dimensional solution

space represents a feasible set of solutions that satisfy the

problem's constraints.

Fig. 17-18 show the solution sets and the Pareto fronts.

Note that we address the problem of minimizing power

consumption and maximization of the income while obeying

QoS guarantees. For better representation, we convert it to

the minimization of two criteria: degradation of both income

and power consumption.

Fig. 17 shows the solution space (two objectives)

including 1200 solutions for each strategy. Each solution is

represented by income degradation and power consumption

degradation. They cover a wide range of values in terms of
opE degradation from 0 to 8, whereas values of V

degradation are in the range from 0 to 1.8.

Online Bi-Objective Scheduling for IaaS Clouds with Ensuring Quality of Service

Fig. 18 shows the eight approximations of Pareto fronts

generated by the studied strategies. They cover power

consumption degradations from 0 to 1.8, and income

degradations from 0 to 1.6.

It can be seen that Min-e, MLp and FFit are located in the

lower-left corner, being among the best solutions in terms of

both objectives. They noticeably outperform MCT-eff.

However, we should not consider only Pareto fronts.

When many of the solutions are outside the Pareto front, the

algorithm's performance is variable. This is the case of FFit:

although the Pareto front is of high quality, many of the

generated solutions are quite far from it, and, hence, a single

run of the algorithm may produce significantly worse

results. FFit solutions cover opE degradations from 0 to 6,

whereas Min-e solutions are in the range from 0 to 3.3 of
opE degradations.

Fig. 11 Performance profile of the income, 8 strategies

Fig. 12 Performance profile of the energy consumption, 8 strategies

Fig. 13 Performance profile of the power consumption and income average,

8 allocation strategies.

Fig. 14. Average income degradation, varying SLA, 8 allocation strategies

Fig. 15 Average power consumption degradation, varying SLA, 8

allocation strategies

Fig. 16 Mean degradation, varying SLA, 8 allocation strategies

A. Tchernykh et al.

Table 5 Degradations and Ranking, MSL-MM

S
L

A

S
tr

at
eg

y

In
co

m
e

E
n

er
g

y

M
ea

n

R
an

k
-I

R
an

k
-E

R
an

k

 S
tr

at
eg

y

In
co

m
e

E
n

er
g

y

M
ea

n

R
an

k
 I

R
an

k
 E

R
an

k

SLA 1

FFit 0.49 1.02 0.76 5 5 5

SLA2

FFit 0.55 1.29 0.92 5 5 5

Max_s 0.50 1.43 0.97 7 8 8 Max_s 0.56 1.86 1.21 6 8 8

Max_eff 0.50 1.08 0.79 6 6 6 Max_eff 0.56 1.40 0.98 8 6 6

Max_seff 0.50 1.37 0.94 8 7 7 Max_seff 0.56 1.76 1.16 7 7 7

MCT_eff 0.49 1.00 0.75 4 4 4 MCT_eff 0.54 1.28 0.91 4 4 4

Random 0.49 0.88 0.68 3 3 3 Random 0.54 1.09 0.81 3 3 3

Min_e 0.43 0.57 0.50 1 1 1 Min_e 0.47 0.68 0.58 1 1 1

MLp 0.47 0.76 0.62 2 2 2 MLp 0.52 0.98 0.75 2 2 2

SLA 3

FFit 0.60 1.50 1.05 5 4 4

SLA 4

FFit 0.59 1.52 1.06 5 4 4

Max_s 0.62 2.14 1.38 7 8 8 Max_s 0.60 2.32 1.46 7 6 6

Max_eff 0.62 1.66 1.14 8 6 6 Max_eff 0.60 1.75 1.18 8 8 8

Max_seff 0.62 2.03 1.33 6 7 7 Max_seff 0.60 2.20 1.40 6 7 7

MCT_eff 0.60 1.51 1.06 4 5 5 MCT_eff 0.59 1.61 1.10 3 5 5

Random 0.59 1.27 0.93 3 3 3 Random 0.59 1.30 0.94 4 3 3

Min_e 0.53 0.84 0.68 1 1 1 Min_e 0.54 0.84 0.69 1 1 1

MLp 0.57 1.19 0.88 2 2 2 MLp 0.57 1.24 0.91 2 2 2

SLA 5

FFit 0.60 1.58 1.09 5 4 4

Mean

FFit 0.57 1.38 0.98 5 4 4

Max_s 0.61 2.44 1.53 7 6 8 Max_s 0.58 2.04 1.31 7 8 8

Max_eff 0.61 1.85 1.23 8 8 6 Max_eff 0.58 1.55 1.06 8 6 6

Max_seff 0.61 2.32 1.46 6 7 7 Max_seff 0.58 1.94 1.26 6 7 7

MCT_eff 0.59 1.68 1.14 4 5 5 MCT_eff 0.56 1.42 0.99 4 5 5

Random 0.59 1.36 0.97 3 3 3 Random 0.56 1.18 0.87 3 3 3

Min_e 0.56 0.85 0.70 1 1 1 Min_e 0.51 0.76 0.63 1 1 1

MLp 0.58 1.29 0.93 2 2 2 MLp 0.54 1.09 0.82 2 2 2

The results of the Pareto front analysis indicate a more

stable behavior of Min-e. As expected the energy waste is

increasing with increasing income. For solutions with the

best income (zero degradation), power consumption

degradation is more than 1.4 for most of the strategies. Min-

e shows a better result, with a degradation value of 0.8.

8.2. Set coverage analysis

In this section, we use the set coverage metric described in

Section 6.3 to compute the performance for the studied

multi-objective scheduling strategies. Using this metric, two

sets of non-dominated solutions can be compared to each

other.

Table 6 reports the SC results for each of the eight Pareto

fronts. The rows of the table show the values  BA,SC for

the dominance of strategy A over strategy B . The columns

indicate  AB,SC , that is, dominance of B over A. The last

two columns show the average of  BA,SC for row A over

column B , and ranking based on the average dominance.

Similarly, the last two rows show average dominance B

over A , and rank of the strategy in each column. We see

that  SC Min e,B dominates the fronts of the other

strategies in the range 68%-93%, and 85% in average.

 eMinASC , shows that Min-e is dominated by the fronts

of other strategies in 23% in average.

The ranking of strategies is based on the percentage of

coverage. The higher ranking of rows implies that the front

is better. The rank in columns shows that the smaller the

average dominance, the better the strategy. According to the

set coverage metric table, the strategy that has the best

compromise between maximizing income and minimizing

energy consumption is Min-e, followed by MLp and FFit on

the second position.

Online Bi-Objective Scheduling for IaaS Clouds with Ensuring Quality of Service

Fig. 17 The solution sets

Fig. 18 The Pareto fronts

Table 6 Set coverage and ranking

B

 A

F
F

it

M
ax

-s

M
ax

-e
ff

M
ax

-s
ef

f

M
C

T
-e

ff

M
in

-e

R
an

d
o

m

M
L

p

M
ea

n

R
an

k
in

g

FFit 1.00 0.92 0.92 0.92 0.93 0.40 0.39 0.26 0.68 2

seMax-s 0.19 1.00 1.00 1.00 0.20 0.13 0.11 0.16 0.40 4

Max-eff 0.19 1.00 1.00 1.00 0.20 0.13 0.11 0.16 0.40 4

Max-seff 0.19 1.00 1.00 1.00 0.20 0.13 0.11 0.16 0.40 4

MCT-eff 0.11 0.70 0.68 0.71 1.00 0.13 0.07 0.13 0.36 5

Min-e 0.70 0.97 0.95 0.97 0.93 1.00 0.68 0.74 0.85 1

Rand 0.26 0.95 0.92 0.95 0.90 0.33 1.00 0.26 0.65 3

MLp 0.33 0.95 0.89 0.92 0.90 0.33 0.39 1.00 0.67 2

Mean 0.28 0.93 0.91 0.92 0.61 0.23 0.27 0.27

Ranking 3 7 5 6 4 1 2 2

9 Conclusions

In this paper, we analyze a variety of scheduling algorithms

with different cloud configurations and workloads

considering two objectives: provider income and power

consumption.

In our problem model, a user submits jobs to the service

provider, which offers several levels of service. For a given

service level the user is charged a cost per unit of execution

time. In return, the user receives guarantees regarding the

provided resources: lower service level – higher cost. The

maximum response time (deadline) used as QoS constraints.

Our experimental analysis on several cases of study

results in several contributions:

(a) We identify the problem of the resource allocation

with several service levels and quality of service to make

scheduling decisions with respect to job acceptance and two

criteria optimization;

(b) We analyze scenarios with homogeneous and

heterogeneous machines of different configurations and

workloads;

(c) We provide a comprehensive experimental study of

greedy acceptance algorithms with known worst case

performance bound and 8 allocation strategies that take into

account heterogeneity of the environment: knowledge free,

energy-aware, and speed-aware;

(e) To provide effective guidance in choosing a good

strategy, we perform a joint analysis of two conflicting goals

first based on the degradation in performance of each

strategy under each metric; then based on the Pareto front

and set coverage metric.

(f) Simulation results presented in the paper reveal that in

terms of minimizing power consumption and maximization

of the provider income Min_e allocation strategy

outperforms other algorithms. It dominates in almost all test

cases. We conclude that the strategy is stable even under

significantly different conditions. It provides minor

performance degradation and copes with different demands.

Min_e provides major dominance with a set coverage

metric. We find that the information about the speed of

machines does not help to improve significantly the

allocation strategies.

A. Tchernykh et al.

(i) The final result suggests a simple allocation strategy,

which requires minimal information and little computational

complexity; nevertheless, it achieves good improvements in

our objectives and provides quality of service guarantees.

However, further study for multiple service classes is

required to assess its actual efficiency and effectiveness.

This will be subject of future work for better understanding

of service levels, QoS and multi-objective optimization in

IaaS clouds.

Acknowledgment. This work is partially supported by CONACYT

(Consejo Nacional de Ciencia y Tecnología, México), grant no. 178415.

The work of S. Nesmachnow is partly funded by ANII and PEDECIBA,
Uruguay. The work of P. Bouvry and J. Pecero is partly funded by

INTER/CNRS/11/03 Green@Cloud. Drozdov is supported by the Ministry

of Education and Science of Russian Federation under contract
No02.G25.31.0061 12/02/2013 (Government Regulation No 218 from

09/04/2010).

References

1. Ahmad, I., Ranka, S.: Handbook of Energy-Aware and Green

Computing, Chapman & Hall/CRC (2012)
2. Zomaya, Y., Lee, Y.: Energy Efficient Distributed Computing

Systems, Wiley-IEEE Computer Society Press (2012)

3. Lezama, A., Tchernykh, A., Yahyapour, R.: Performance Evaluation
of Infrastructure as a Service Clouds with SLA Constraints.

Computación y Sistemas 17(3): 401–411 (2013)

4. Schwiegelshohn, U., Tchernykh, A.: Online Scheduling for Cloud
Computing and Different Service Levels, 26th Int. Parallel and

Distributed Processing Symposium Los Alamitos, CA, pp. 1067–1074

(2012)
5. Tchernykh, A., Pecero, J., Barrondo, A., Schaeffer, E.: Adaptive

Energy Efficient Scheduling in Peer-to-Peer Desktop Grids, Future

Generation Computer Systems, 36:209–220 (2014).
6. Raycroft, P., Jansen, R., Jarus, M., Brenner, P.: Performance bounded

energy efficient virtual machine allocation in the global cloud,

Sustainable Computing: Informatics and Systems 4(1):1–9 (2014)
7. Khan, S., Ahmad, I.: A cooperative game theoretical technique for

joint optimization of power consumption and response time in
computational grids. Transactions on Parallel and Distributed

Systems 20(3):346–360 (2009)

8. Lee, Y., Zomaya, A.: Energy conscious scheduling for distributed
computing systems under different operating conditions, IEEE

Transactions on Parallel and Distributed Systems 22(8):1374–1381

(2011)
9. Mezmaz, M., Melab, N., Kessaci, Y., Lee, Y., Talbi, E., Zomaya, A.,

Tuyttens, D.: A parallel bi-objective hybrid metaheuristic for energy-

aware scheduling for cloud computing systems. Journal of Parallel
and Distributed Computing 71(11):1497–1508 (2011)

10. Pecero, J., Bouvry, P., Fraire, H., Khan, S.: A multi-objective GRASP

algorithm for joint optimization of power consumption and schedule
length of precedence-constrained applications”. International

Conference on Cloud and Green Computing, pp. 1–8 (2011)

11. Lindberg, P., Leingang, J., Lysaker, D., Khan, S., Li, J.: Comparison
and analysis of eight scheduling heuristics for the optimization of

power consumption and makespan in large-scale distributed systems.

Journal of Supercomputing 59(1):323–360 (2012).
12. Nesmachnow, S., Dorronsoro, B., Pecero, J., Bouvry, P.: Energy-

Aware Scheduling on Multicore Heterogeneous Grid Computing

Systems. Journal of Grid Computing 11(4):653–680 (2013)
13. Iturriaga, S., Nesmachnow, S., Dorronsoro, B., Bouvry, P.: Energy

efficient scheduling in heterogeneous systems with a parallel

multiobjective local search. Computing and Informatics 32(2):273–
294 (2013)

14. DasGupta, B., Palis, M.: Online Real-time Preemptive Scheduling of

Jobs with Deadlines on Multiple Machines, Scheduling 4(6), 297-312
(2001)

15. Parallel Workload Archive [Online, November 2014]. Available at

http://www.cs.huji.ac.il/labs/parallel/workload

16. Grid Workloads Archive [Online, November 2014]. Available at

http://gwa.ewi.tudelft.nl
17. Ramírez, J.M., Tchernykh, A., Yahyapour, R., Schwiegelshohn, U.,

Quezada, A., González, J., Hirales, A.: Job Allocation Strategies with

User Run Time Estimates for Online Scheduling in Hierarchical
Grids. Journal of Grid Computing 9:95–116 (2011)

18. Quezada, A., Tchernykh, A., González, J., Hirales, A., Ramírez, J.-

M., Schwiegelshohn, U., Yahyapour, R., Miranda, V.: Adaptive
parallel job scheduling with resource admissible allocation on two-

level hierarchical grids. Future Generation Computer Systems 28(7):

965–976 (2012)
19. Tchernykh, A., Lozano, L., Schwiegelshohn, U., Bouvry, P., Pecero,

J. E., Nesmachnow, S.: Energy-Aware Online Scheduling: Ensuring

Quality of Service for IaaS Clouds. International Conference on High
Performance Computing & Simulation (HPCS 2014), pp 911–918,

Bologna, Italy (2014)

20. Zitzler, E.: Evolutionary algorithms for multiobjective optimization:
Methods and applications, PhD thesis, Swiss Federal Institute of

Technology. Zurich (1999)

21. Tchernykh, A., Lozano, L., Schwiegelshohn, U., Bouvry, P., Pecero,
J. E., Nesmachnow, S.: Bi-Objective Online Scheduling with Quality

of Service for IaaS Clouds. In 3rd IEEE International Conference on

Cloud Networking, Luxembourg (2014)
22. Tchernykh, A., Schwiegelsohn, U., Yahyapour, R., Kuzjurin, N.:

Online Hierarchical Job Scheduling on Grids with Admissible

Allocation, Journal of Scheduling 13(5):545–552 (2010)
23. Tchernykh, A., Ramírez, J., Avetisyan, A., Kuzjurin, N., Grushin, D.,.

Zhuk, S.: Two Level Job-Scheduling Strategies for a Computational
Grid. In R. Wyrzykowski et al. (eds.) Parallel Processing and

Applied Mathematics, 6th International Conference on Parallel

Processing and Applied Mathematics. Poznan, Poland, 2005, LNCS
3911, pp. 774–781, Springer-Verlag (2006)

24. Tsafrir, D., Etsion, Y., Feitelson, D.: Backfilling Using System-

Generated Predictions Rather than User Runtime Estimates. IEEE
Transactions on Parallel and Distributed Systems 18 (6), pp.789–803

(2007)

25. Nesmachnow, S., Perfumo, C., Goiri, I.: Controlling datacenter power
consumption while maintaining temperature and QoS levels. In: 3rd

IEEE International Conference on Cloud Networking, Luxembourg

(2014)
26. Dorronsoro, B., Nesmachnow, S., Taheri, J., Zomaya, A., Talbi, E-G.,

Bouvry, P.: A hierarchical approach for energy-efficient scheduling of

large workloads in multicore distributed systems. Sustainable
Computing: Informatics and Systems 4:252–261 (2014)

27. Deb, K.: Multi-Objective Optimization Using Evolutionary

Algorithms. John Wiley & Sons, Inc., New York, NY, USA (2001)
28. Hirales, A., Tchernykh, A., Roblitz, T., Yahyapour, R.: A Grid

simulation framework to study advance scheduling strategies for

complex workflow applications. Parallel Distributed Processing,
Workshops and Phd Forum (IPDPSW), 2010 IEEE International

Symposium on. pp. 1–8 (2010).

