
0-7695-2160-6.04 $20.00  2004 IEEE 407 

Continuous Mode Changes in Mechatronic Systems 
 
 

Klaus Ecker 
TU Clausthal, Germany 
ecker@in.tu-clausthal.de 

Andrei Tchernykh 

CICESE, Mexico 
chernykh@cicese.mx 

Frank Drews 
Ohio Univerity, USA 

drews@ohio.edu 

Silke Schomann 
TU Clausthal, Germany 

schomann@in.tu-clausthal.de 
 
 
 

Abstract 
 
This paper deals with the problem of controlling 

highly dynamic mechatronic systems. Such systems 
may work in several different operation modes, or even 
underlie continuous mode changes. While concepts are 
available, that deal with discrete operation modes, the 
continuous case is unsolved. In this paper some ideas 
of how to tackle the scheduling problem with continu-
ous mode changes are discussed.  

It is assumed that in mechatronic systems not all 
modes are realistic. A higher requirement in one sys-
tem component may exclude higher requirements in 
other components. We expect that such dependencies 
are specified in the technical specification of the 
mechatronic system, and from them the domain of real-
istic modes can be derived. In this paper, we discuss 
two optimization problems: (1) Given a set of hosts, 
find a minimum number of allocations that feasibly 
cover the whole domain of realistic modes. (2) In the 
design phase one would like to minimize the number of 
processors for which such a set of allocations exists. 
 
1. Introduction 
 

Real-time systems are used to control technical en-
vironments, built to serve some intended purpose. Due 
to their principally uncooperative nature they will not 
automatically behave as expected. To enforce a certain 
behavior, sensors informing about the status of the en-
vironment are periodically read. The sensor signals are 
processed by comp utational activities, and may result 
in new settings for actuators in case measured data de-
viate from the technical specification. Reading of sen-
sor signals, their evaluation and generation of actuator 
signals must be done periodically, with periods de-
pending on the particular control requirements for the 
environment [19-21] . 

Typical examples for such situations are mecha-
tronic systems, which are understood as technical sys-
tems (e.g., a mechanical device) equipped with local or 

distributed digital control units, also called embedded 
systems, for performing the real-time control, and an 
interface to the user who defines operating conditions 
for the environment. Figure 1 depicts the flow of data 
in a mechatronic system.  

From a more detailed perspective, the user sets di-
rections for some specific behavior of the system. 
These directions are translated into control require -
ments for the real-time system, which takes responsi-
bility for the correct realization of the human com-
mands. Changing the control requirements leads to new 
settings of the parameters used in the control routines, 
and to new timing conditions for the computations. As 
a consequence, computation times of the control proc-
esses and timing parameters such as periods and dead-
lines will be changed. 

 

Environ-
ment

control
data

sensed
data

"internal" "external"

directions

Human

Real-Time 
System conditions

control

 
 

Figure 1. Structure of a mechatronic system 
 

If the timing conditions dictated by the environment 
do not change over time, we say that the environment 
has a constant (single) mode of operation. In more 
flexible applications, the environment has several dif-
ferent operation modes, for instance the take-off, cruise 
and landing modes of an aircraft. In the design of a 
real-time system, such changes can be considered by 
analyzing each mode separately, and develop off-line 
schedules for each of them. In other applications the 
operational modes may underlie continuous changes. 
An example is the modern car engine, in which some 



 408 

of the control requirements must be in pace with rota-
tion speed.  

Common real-time engineering deals with envi-
ronments whose operating conditions are fixed or at 
least do not change during a given time span. In such a 
situation, the controlling system encounters well de-
fined timing conditions for the periodically executed 
end-to-end computations. Many research results have 
been published, dealing with the specification and de-
sign of such systems [8,9], verification and dependabil-
ity [10,11], and scheduling (e.g.,  [1-7]). 

Recently, the incorporation of quality of service and 
utility concepts to scheduling and resource manage-
ment has received increasing interest from the research 
community [6,7,12,13].  The basic premise here is that 
it would be beneficial to have applications degrade 
their quality of output in order to meet their real-time 
deadlines. The quality of a particular application’s out-
put may be degraded or enhanced to provide a higher 
overall system benefit. This can be seen as an approach 
towards optimized control in still constant operating 
conditions. An extension to a control that adapts to 
dynamically changing operating conditions was dis-
cussed in [14-18]. The essential assumption in our pre-
vious work [16-18] is to have workload-dependent 
processing times for the real-time actions. The techni-
cal system could work in different "modes of opera-
tion", described by so-called extrinsic parameters. The 
objective is to provide the real-time system with a set 
of allocations to the computational resources, and a 
resource manager that initiated reallocations if the cur-
rent allocation could no longer operate feas ibly. The 
system provides flexible and adaptive reaction in a 
highly dynamic environment with the possibility of 
changes of values of the extrinsic parameters, by find-
ing a set of feasible allocations of computational units 
to hosts to cover all operational modes. For each allo-
cation the maximum range of extrinsic attributes, that 
allowed feasible control, was analyzed. By means of 
service parameters additional flexibility is introduced 
which, if required, enabled the environment to cover 
higher requirements at a reduced service level.  

In our approach it is also assumed that a set of hosts 
(processors or machines) is available for the computa-
tional activities. We start with the assumption that 
mechatronic systems will generally work in different 
operation modes that can be continuously changed. In 
the total set of modes, described by extrinsic parame-
ters, not all modes are realistic. We assume that a 
higher requirement in one system component may ex-
clude higher requirements in other components. We 
expect that such dependencies are specified in the tech-
nical specification of the mechatronic system, and from 
them the domain of realistic modes (or values of ex-
trinsic parameters) can be derived. The problem now is 

to determine a set of feasible allocations that covers all 
realistic modes. In this paper, we discuss two optimiza-
tion problems: (1) Given set of hosts, find a minimum 
number of allocations that feasibly cover the whole 
domain of realistic modes. (2) In the design phase one 
would be interested in minimizing the number of proc-
essors for which such a set of allocations exists. 

The paper is organized as follows: In section 2 we 
present our model of a dynamic, distributed real-time 
system. Section 3 describes environments that may 
operate in different modes. Section 4 deals with the 
problem of finding a feasible schedule for a given allo-
cation. Finally, section 5 discusses how an allocation 
can be determined.  
 
2. The model 
 

The model that is introduced in this section follows 
the classical periodic task model [23], including the 
extensions discussed by Bate and Burns [22]. We as-
sume the existence of a set of periodic paths  P  = {P1, 
…,Pk}; each path Pj represents an end-to-end computa-
tion [24], that has to be repeatedly executed with given 
period πj . This means that the ith instance of Pj is com-
pletely processed in the interval [(i – 1)πj, iπj], i = 1, 2, 
3,… .  

Other parameters restricting the path execution in 
each period may be a release time rj or a deadline dj , 
and between two succeeding periods of a path there 
may be some negative jitter (with bound j–) or positive 
jitter (with bound j+) specified: If the ith instance of Pj 
starts at a time si ∈ [(i – 1)πj , iπj], then the start time of 
the next instance of Pj is restricted to the interval 
[max{iπj , iπj + si – j–}, min{ iπj, iπj + si + j+}].  

A path consists of a number of tasks, each with 
known worst-case execution time and/or average exe-
cution time, and precedence constraints between them. 
Let T  = {T1,…, Tn} be the total set of tasks in P . No-
tice that different paths do not necessarily have disjoint 
task sets. Denote by p the precedence relation among 
the tasks of T .  

A set of hosts H = {H1,…, Hm} is used for process-
ing the paths. Hosts are assumed to have uniform capa-
bilities in the sense that the tasks can be processed on 
any processor, but possibly at different speeds. To in-
clude communication delays in the model, for each pair 
of tasks Ti p Tj , processed on the respective hosts Hs 
and Ht , a communication delay c(i, j, s, t) ≥ 0 may be 
given.  

Asynchronous (or sporadic) tasks can be considered 
if maximum frequencies of their occurrences are 
known. The inverse of the maximum frequency defines 
the smallest possible period of executions. Taking this 



 409 

into account would keep the system on the safe side. 
By this way we are able to include asynchronous tasks 
in the periodic task model.  

The scheduling problem is defined as follows: Find 
an allocation alloc: T  → H  of tasks to hosts such that 
all timing conditions are obeyed. Moreover, if there are 
several possible allocations, choose one that maximizes 
system utility. Knowing the tasks to be processed by 
host Hs , a schedule Ss can be determined off-line by 
the EDF (earliest deadline first) or RM (rate mono-
tonic) rule. Notice that since the allocation of all tasks 
to processors is given, we also know all the communi-
cation requirements. A simple modification of EDF or 
RM allows including these delays. Denote by S the 
overall schedule, S = (S1,…,Sm). 

Given a schedule Ss for host Hs , and a task Tj with 
alloc(Tj) = Hs . Each pair of adjacent instances of Tj has 
some distance δ(Tj) that deviates from the period πj . 
The jitter of Tj is defined as the absolute of the maxi-
mum allowed deviation from πj : εj(Ss) := | δ(Tj) − πj | . 

If smaller task jitters are favored, the quality of 
execution of Tj may be defined as the inverse of the 

jitter εj(Ss)
−1. In general, not all tasks will be of the 

same importance; hence a numerical weight wj may be 
introduced for each task.  

By this we can evaluate the schedules Ss on each 

host Hs : γ (Ss) := max{ wj⋅εj(Ss)
−1 | alloc(Tj) = Hs }. 

Based on this, an overall quality of service (or benefit) 
can be defined by an aggregation function 
AGGR(γ (S1),…, γ (Sm)), for example, AGGR(γ (S1),…, 
γ (Sm)) := max{γ (S1),…,γ (Sm)}. 

 
3. Operation modes  

 
We are now describing environments that may op-

erate in different modes. In [16], the notion of extrinsic 
parameters was introduced. Extrinsic parameters  de-
scribe functional requirements imposed by the envi-
ronment or the human to the controlling real-time sys-
tem. It is important to notice that the real-time system 
is not able to change the values of extrinsic parameters. 
It rather has to adjust to modified conditions set by the 
extrinsic attributes. We may say that extrinsic parame-
ter define the operational mode the environment is per-
forming.  

Let E = {E1,…,Eρ} be the set of extrinsic parame-
ters that define the conditions for the correct operating 
of the environment (external system). Each tuple of 
values (e1,…,eρ) of  E  defines a mode of operation. We 
assume that each Ei has numerical values from some 

known interval [ei      
min , ei      

max ]. The set of operation modes 

is defined by M = { (e1,…,eρ) |  ei ∈ [ei      
min, ei      

max] , i = 
1,…,ρ }. 

Typical examples of extrinsic parameters are:  
- rotation speed of some part in the technical system,  
- amount of data sent to the real-time system, 
- required precision of control actions, 
- timing accuracy of control actions.  

Single operation mode means that the extrinsic at-
tributes have fixed values. In this case, |M | = 1. Be-
sides this special case, we differentiate between dis-
crete and continuous operation modes. In the discrete 
case, modes M1, M2, … are defined by discrete values 
of extrinsic attributes. Assuming that each extrinsic 
variable has one of finitely many values, the number of 
different modes is finite. In the case of continuous op-
eration mode, extrinsic parameters may change con-
tinuously any time.  

Depending on the mode the real-time system has to 
execute a set of paths, each with some given period, set 
of tasks, task processing times, jitter, and precedences. 
Depending on the particular change of mode, periods, 
processing times, deadlines, offsets, and jitter bounds 
may experience changes. As these parameters depend 
on the actual mode M = (e1,…,eρ) ∈ M, we may as-
sume functions that define the operating conditions of 
the real-time system, that is  

for the path set:  P (M), 
for the period πi of path Pi ∈ P : πi(M), 
for set of tasks: T (M), 
for the processing time pj of task Tj ∈ T : pj(M), 

for the jitter j– and j+ of task Tj ∈ T : j–(M) and 
j+(M), 
and may even influence the precedences of tasks in 
paths.  

The above mentioned examples of extrinsic pa-
rameters may have consequences for the scheduling 
parameters in the real-time system, for example:  
- rotation speed of some part in the technical system 

defines some path period, 
- amount of data sent to the real-time system (work-

load) defines task processing times, 
- required precision of control actions defines the task 

processing times, 
- timing accuracy of control actions defines the task 

jitter. 
A varying set of paths can easily captured by mo d-

eling the set of all paths that may occur in any mode, 
and disabling those being not required in a particular 
mode. Disabling can be done by setting the processing 
parameters of an unused path appropriately: all proc-
essing times and memory requirements a zeroed, the 
period and deadlines are set to infinity. The first condi-
tion ensures that the path does not consume any system 



 410 

resources, and the second ensures that the path will 
never be executed, provided the rate monotonic or EDF 
scheduling strategy is used. Hence we assume w.l.o.g. 
that the set of paths, set of tasks and, along with them, 
precedences do not depend on the mode. 

We assume that extrinsic parameters can be defined 
in such a way that some monotony condition is ful-
filled: a larger value of any component of E results in 
higher requirements in the real-time system. For exa m-
ple: 
- higher rotation speed results in shorter path periods, 
- larger workload or higher precision requirements 

result in longer task processing times, 
- higher timing accuracy results in tighter jitter 

bounds. 
Generally, the dependency of the functions P (M) , 

πi(M) for each path, T (M) , pj(M) for each task, j–(M)  
and j+(M) on the mode M, i.e. on the extrinsic parame-
ters, must be analyzed very carefully by the system 
designer, in cooperation with the designers of the envi-
ronment.  

An example is the car engine control1, where of op-
timal timing conditions depend on many external fac-
tors, such as speed and gear, engine temperature, qual-
ity of gasoline, moist of air, and car load.  

 
4. Scheduling 

 
The general problem is to find an allocation of tasks 

to hosts such that each processor feasibly processes the 
assigned tasks. In this section we start our considera-
tions from a given allocation and aim at finding a fea-
sible schedule for each host that remains stable under 
mode changes. The allocation problem is discussed in 
section 5.  

Scheduling strategies may be based on fixed or dy-
namically changing task priorities. The most prominent 
fixed priority strategy is the RM (rate monotonic) rule: 
tasks with a smaller period are processed with higher 
priority. Upon release of a higher priority task, an exe-
cuting lower priority task is preempted. For dynamic 
strategies, we mention the EDF (earliest deadline first) 
strategy, which may be implemented preemptively or 
non-preemptively. 

It is known from Liu and Layland [23] that the rate 
monotonic scheduling algorithm can be used off-line 
on a processor Pi if the total processor utilization Ui := 
∑(pj/πj) (summation over all tasks assigned to Pi) does 

not surmount n(21/n − 1), where n is the number of 
tasks assigned to Pi . With increasing number n, this 
bound tends towards 0.69.. . Hence, as a simple thumb 
rule, RM is a safe scheduling strategy if processors are 

                                                                 
1 personal information from A. Seyer, Daimler Chrysler Company 

utilized not more than approximately 70 %. Further-
more, RM is a fixed priority rule, which makes it ideal 
for on-line scheduling. Using RM for off-line schedul-
ing would even allow processor utilizations beyond the 
70 % bound.  

EDF strategy works optimally if it is used preemp-
tively. The only (and in fact trivial) condition is that the 
processor utilization is bounded by 1. EDF has the dis-
advantage that task priorities are not fixed, but, on the 
positive side, it produces in general less preemption 
than RM. 

The question is whether on-line or off-line schedul-
ing should be favored. In on-line scheduling, the task 
timing is organized according to a simple rule like RM 
or EDF, whereas in the off-line case a schedule is de-
termined at the time of designing the real-time system, 
and stored in a simple table to be used at run-time. 
Both, RM and EDF can be used off-line and on-line. 
The on-line strategy generally offers greater flexibility 
for adapting to unforeseen situations or changing re-
quirements. On the other hand, the scheduler as part of 
the real-time operating system causes some overhead 
when executing the scheduling algorithm. Another 
drawback is the generally non-optimality of the result-
ing decisions taken by the scheduler because of lack of 
time. Off-line strategies, in contrast, follow a fixed and 
even optimized working plan (schedule) that has been 
set up in the design phase; at run-time, the scheduler 
executes the tasks according to the schedule. As com-
pared to on-line execution, off-line execution is gener-
ally safer, but suffers from lacking flexibility in case of 
changing controlling conditions.  

In embedded systems such as in mechatronics, the 
off-line execution is often favored because the envi-
ronment to be controlled is expected to require constant 
controlling conditions. The question, however, aris es, 
how varying operation modes can be captured by an 
off-line schedule.  

We propose an approach, in which a schedule is de-
termined off-line, that remains feasible in the worst 
possible operation mode. Consider a schedule feasible 
for some given mode M. We may generally be able to 
modify this schedule for all modes M' ≤ M (compo-
nent-wise ≤) by a "relaxing" technique. In this, appro-
priate factors are derived from the extrinsic parameters 
that are used to stretch periods and task start times, or 
reduce processing times of the original schedule. Such 
procedure would cause no essential overhead in the 
operating system, while we can still benefit from the 
advantages of the off-line execution. Notice that if a 
feasible schedule constructed by EDF or RM is re-
laxed, it will remain feasible. We refer to such a sched-
ule for mode M as basic with respect to all modes ≤ M . 

Due to the monotony assumption, the maximum re-
quirements arise if all extrinsic parameters attain their 



 411 

maximum value. But in a particular application, such 
situation may be unrealistic. What we may instead as-
sume is the knowledge of the set of realistic extreme 
extrinsic parameter values.  

To illustrate the situation, consider an environment 
with two extrinsic parameters, e1 and e2 . A careful 
technical analysis may result in a surface of extreme 
modes, as depicted in Figure 2. This separates the light 
shaded area of realistic pairs of modes from the dark 
shaded area of unrealistic ones.  

e1

e2

e2
min

e2
max

e1
min e1

max

extreme values
of realistic modes 

(a, b)

unrealistic
modes

realistic
modes

 
 

Figure 2. Space of environment operation 
modes 

 
A pair (a, b) of extrinsic values is called extreme , if 

an increase in any one of the components leads to an 
unrealistic requirement. If an allocation of tasks to 
hosts is feasible in mode (a, b) then, due to the monot-
ony assumption, the correspondingly relaxed schedule 
will be feasible for all modes in the hatched area. In 
this case we say that the modes in the hatched area are 
covered by (a, b). 

We can, however, not assume that a schedule feasi-
ble for (a, b) is also feasible for other extreme points, 
even if they are close to (a, b). As a consequence, we 
would have to solve the scheduling problem separately 
for each extreme realistic mode. Since this is not prac-
tical, and even impossible in the continuous case, we 
propose an alternative strategy: If we find a feasible 
schedule for a non-realistic mode, i.e., for a point in the 
gray area, this solution would be feasible for a greater 
set of realistic modes (see point e in Figure 3).  

Especially, if we should be able to find a schedule 
for the most extreme point (e1     

max,…, e2     
max), this could be 

used generally for any mode by proper relaxation. In 
general, however, we must face the fact that only par-
tial sections of the extreme modes can be covered by a 
schedule. Assume therefore that a schedule should be 
(off-line) determined that is feasible for e' and e" and 

for all extreme points located between e' and e". If we 
are able to find a schedule S(e) that is feasible for the 
(in fact unrealistic) point e, S (e) will also be feasible 
for all modes that are covered by e. In the run-time 
system, when given some mode in the shaded rectan-
gle, the relaxing technique mentioned before could 
now be applied to modify S (e) to a feasible schedule 
for this mode.  

 
 
 

e1

e2

e2
min

e2
max

e1
min e1

max

e'

e"

e

 
 

Figure 3. Operation mode space. The hatched 
set of realistic modes is covered by the unreal-

istic mode e 
 

e1

e2

e2
min

e2
max

e1
min e1

max

overlapping
line sections

 
 

Figure 4. Choosing non-realistic modes to 
cover all realistic modes 

 
If there is no such schedule for point e, a smaller 

section of the extreme modes must be chosen. One way 
to realize this concept is to divide the space of extreme 
operating modes in compact subspaces, and determine 



 412 

off-line a feasible schedule for each subspace, as dem-
onstrated in Figure 4 for two extrinsic parameters. This 
leads to the question of how to choose unrealistic 
modes to cover the whole realistic area. It has obvi-
ously to be expected, that each schedule is based on a 
different allocation. From practical view the objective 
should be minimizing the number of allocations. A 
detailed discussion of finding a corresponding set of 
unrealistic modes is left to a later analysis. 

e1

e2

e2
min

e2
max

e1
min e1

max

unrealistic
modes

realistic
modes

 

(a) 

e1

e2

e2
min

e2
max

e1
min e1

max

realistic
modes

unrealistic
modes

 

(b) 

Figure 5. Approximating the domain of modes. 
(a): by a linear function, (b): by discrete extrin-

sic parameters 
 
4.1. Practical considerations  
 
To specify the surface of extreme realistic modes ana-
lytically may be difficult and even improper from a 
practical point of view. We propose two ways that may 
give good approximations: 

- A (ρ–1)-dimensional linear function of the ρ extrin-
sic variables may be a good approximation of the 
boundary of extreme modes.  

- Discretization of the domain for each extrinsic at-
tribute. 
Figure 5 sketches the two simplifications: In (a), the 

curved line is replaced by the straight line. The hatched 
area is the enlarged, but linearized domain of modes. 
One could choose proper modes on the replaced line 
and determine allocations for them. (b) shows the ef-
fect of discretization. The black dots represent (still 
unrealistic) modes as close as possible at the extreme 
mode line. The corresponding modes can be repre-
sented by a table. For each dot, one may determine an 
allocation.  
 
5. Allocation of activities to hosts 
 

Now we turn to the question of how to find alloca-
tions of tasks or paths to hosts in case of a parallel or 
distributed computer system.  

Ecker et al. developed in [16] a concept in which an 
allocation manager has stored a list of allocations of 
tasks to hosts, and, depending on changes of system 
requirements, the allocation manager could choose 
another allocation from the list. In this paper we follow 
a similar concept: if the current extrinsic values run out 
of some defined interval, the allocation manager is 
called to choose a feasible allocation from a given list 
of off-line determined allocations. We propose three 
strategies. 
(1) Start from the in general unrealistic most extreme 

mode (e1     
max,…, ek     

max} as basic mode, and apply the 
first fit algorithm to allocate the tasks one by one 
to hosts. Instead of tasks, allocating complete paths 
would possibly considerably reduce the communi-
cation overhead, but at the cost of an increasing 
number of used processors, because paths repre-
sent larger computational quantities. If the RM 
scheduling algorithm is applied, then the processor 
load should not go beyond 70% to ensure safe off-
line schedules. Since all other modes are relaxed as 
compared to the basic mode, an allocation for the 
basic mode will remain feasible. As a result, the 
number of processors will be high as compared to 
the next strategies. 

(2) Solutions with smaller numbers of processors may 
be obtained if we choose several – still unrealistic 
– basic modes that are closer to the extreme mode 
surface. The basic modes should be chosen such 
that each point on the extreme surface is covered 
by at least one basic mode (see figure 4). For each 
basic mode, the allocation problem is solved by the 
first fit algorithm. Hence we get one allocation for 



 413 

each basic mode. When allocating paths or tasks to 
them, we can expect a smaller number of hosts to 
be used, because of the reduced processing re-
quirements of the paths and tasks. If the sections 
covered by basic modes overlap we will get a solu-
tion that is more stable against mode changes, be-
cause the allocations are able to handle larger set 
of modes.  

A smaller number of hosts can be gained if the 
basic modes are closer to the extreme mode sur-
face. The trade-off is a greater number of basic 
modes which increases the number of allocations. 

(3) If the number of hosts is fixed, one can apply a 
heuristics to search for a set of basic modes to 
cover all realistic modes, such that feasible alloca-
tions to the given number of hosts exist. 

For cases (2) and (3) algorithms are being devel-
oped.  
 
6. Summary and Outlook 

 
In this paper, we discussed the problem of control-

ling highly dynamic technical systems. Our approach 
can be used for mechatronic systems for which realistic 
operation modes can be derived from the technical 
specification of the system. More generally, the range 
of applications includes systems that may work in dif-
ferent operation modes, or even underlie continuous 
mode changes. Unlike existing approaches that only 
deal with discrete operation modes, the research herein 
examines the yet unsolved case of continuous mode 
changes. In this paper some ideas of how to tackle the 
scheduling problem with continuous mode changes are 
discussed. We discussed two optimization problems: 
(1) Given a set of hosts, find a minimum number of 
allocations that feasibly cover the whole domain of 
realistic modes. (2) In the design phase one would like 
to minimize the number of processors for which such a 
set of allocations exists.  

Future work includes simulations of the presented 
concept in real-world applications, and the application 
to a special project on steering by wire in cars devel-
oped at the Technical University of Clausthal. Another 
direction pursues the incorporation of quality-of-
service (QoS) attributes. 
 
7. References 
 
[1] C. J. Hou and K. G. Shin. Load sharing with considera-
tion of future task arrivals in heterogeneous distributed real-
time systems. IEEE Transactions on Computers, 43(9):1076–
1090, 1994. 
[2] J. Huang and D. Z. Du. Resource management for con-
tinuous multimedia database applications. In Proceedings of 

the IEEE Real-Time Systems Symposium, pages 46–54., 
IEEE Computer Society Press, 1994. 
[3] T. F. Abdelzaher and K. G. Shin. Combined task and 
message scheduling in distributed real-time systems. IEEE 
Transactions on Parallel and Distributed Sy stems, 
10(11):1179–1191, 1999. 
[4] D. T. Peng, K. G. Shin, and T. F. Abdelzaher. Assignment 
and scheduling of communicating periodic tasks in disributed 
real-time systems. IEEE Transactions on Software Engineer-
ing, 23(12), 1997. 
[5] A. Burchard, J. Liebeherr, Y. Oh, and S. H. Son. New 
strategies for assigning real-time tasks to multiprocessor sy s-
tems. IEEE Transactions on Computers, 44(12), 1995. 
[6] R. Rajkumar, C. Lee, J. P. Lehoczky, and D. P. Siewio-
rek, A QoS-Based Resource Allocations Model, In Proceed-
ings of the IEEE Real-Time Systems Symposium, 1997. 
[7] R. Rajkumar, C. Lee, J. P. Lehoczky, and D. P. Siewio-
rek, Practical Solutions for QoS-Based Resource Allocation 
Problems, In Proceedings of the IEEE Real-Time Systems 
Symposium, 1998. 
[8] R. L. Grossman, A. Nerode, A. P. Ravn, and H. Rischel. 
Hybrid Systems, LNCS, vol. 73, Springer, 1993 
[9] P. Antsaklis, W. Kohn, A. Nerode, and S. Sastry, Hybrid 
Systems II, LNCS, vol. 999. Springer, 1993 
[10] Rushby, J., Formal Methods and their Role in the Certi-
fication of Critical Systems. 1999, Computer Science Labora-
tory, SRI International: Menlo Park, CA 
[11] Arora, A. and M. Gouda, Closure and convergence: A 
foundation for fault-tolerant computing. IEEE Transactions 
on Computers, 1993. 19(11): p. 1015-1027 
[12] D. Jensen, D. Locke and H. Tokuda, A Time-Driven 
Scheduling Model for Real-Time Operating Systems, In Pro-
ceedings of the IEEE Real-Time Systems Symposium, pp. 
112–122, IEEE CS Press, 1985. 
[13] A. Burns, D. Prasad, A. Bondavalli, F. Di Gian-
domenico, K. Ramamritham, J. Stankovic, and L. Strigini, 
The Meaning and Role of Value in Scheduling Flexible Real-
Time Systems, Journal of Systems Architecture, vol. 46, pp. 
305-325, 2000. 
[14] M. Humphrey, S. Brandt, G. Nutt and T. Berk, The 
DQM Architecture: Middleware for Application -centered 
QoS Resource Management, IEEE Workshop on Middleware 
for Distributed Real-Time Systems and Services , December 
1997, pp. 97-104. 
[15] D. Karr, C. Rodrigues, J. Loyall, R. Schantz, Y. Krish-
namurthy, I. Pyarali and D. Schmidt, Application of the QuO 
Quality-of-Service Framework to a Distributed Video Appli-
cation, In Proceedings of the International Symposium on 
Distributed Objects and Applications, September 18-20, 
2001, Rome, Italy. 
[16] Ecker, K., Juedes, D., Welch, L., Drews, F., Chelberg, 
D., 2003. An optimization framework for dynamic, distrib-
uted real-time systems. In Proceedings of the 11th Interna-
tional Workshop on Parallel and Distributed Real-Time Sy s-
tems (WPDRTS2003), to appear. 
[17] F. Drews, L. Welch, D. Juedes, and D. Fleeman, A. Bru-
ening, K. Ecker, and M. Hoefer. 2004. Utility-Function based 
Resource Allocation for Adaptable Applications in Dynamic, 
Distributed Real-Time Sy stems. WPDRTS'04 
[18] F. Drews, L. Welch, An Architecture and a General 
Optimization Framework for Resource Management in Dy-



 414 

namic, Distributed Real-Time Systems, In Proceedings of the 
9th IEEE International Workshop on Object-oriented Real-
Time Dependable Systems (WORDS2003), 2003. 
[19] http://www.mechatronik-portal.de/mechatronik_litera-
tur.html 
[20] St. Ashley, Associate Editor, The American Society of 
Mechanical Engineers, 1997 
[21] Design and Service 2001-2003 http://www.mechatronik-
portal.de 
[22] Bate, I., and Burns, A. 2003. An integrated approach to 
scheduling in safety-critical embedded control systems. Real-
Time Systems Journal 25, 5-37. 
[23] Liu, C. L., and Layland, J. W. 1973. Scheduling algo-
rithms for multiprogramming in a hard real-time environ-
ment. Journal of the ACM 20, 40-61. 
[24] Richard Gerber, Seongsoo Hong, Manas Saksena, Guar-
anteeing End-to-End Timing Constraints by Calibrating In-
termediate Processes, Proceedings of the IEEE Real-Time 
Systems Symposium, December 1994.  
 


