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Abstract

This paper addresses nonclairvoyant and non-
preemptive online job scheduling in Grids. In the
applied basic model, the Grid system consists of a large
number of identical processors that are divided into several
machines. Jobs are independent, they have a fixed degree
of parallelism, and they are submitted over time. Further,
a job can only be executed on the processors belonging
to the same machine. It is our goal to minimize the total
makespan. We show that the performance of Garey and
Graham’s list scheduling algorithm is significantly worse
in Grids than in multiprocessors. Then we present a Grid
scheduling algorithm that guarantees a competitive factor
of 5. This algorithm can be implemented using a “job
stealing” approach and may be well suited to serve as
a starting point for Grid scheduling algorithms in real
systems.

1. Introduction

Originally introduced in 1998 by Foster and Kessel-
man [2], Grid computing describes the use of geograph-
ically distributed resources for coordinated problem solv-
ing in virtual organizations. While Grids are not limited
to computational resources and can comprise arbitrary ser-
vices and devices, many Grid installations are high perfor-
mance computing (HPC) Grids that typically include paral-
lel computers with different sizes. In the area of parallel and
distributed computing, Grids became a common technology
with many existing production installations. They allow

researchers from around the world to transparently access
computing resources made available by different providers.
Due to the size and dynamic nature of Grids, the process
of selecting and allocating computational jobs to available
Grid resources must be done in an automatic and efficient
fashion. This is the task of a Grid scheduling system. Var-
ious scheduling systems have been proposed and imple-
mented in different production Grids. These systems are
typically based on scheduling methods for parallel proces-
sors and use an additional Grid scheduling layer [10].

In general, the problem of scheduling jobs on multipro-
cessors is well understood and has been subject of research
for decades. Many research results exist for many different
variants of this problem. Some of them provide theoreti-
cal insights while others give hints for the implementation
of real systems. However, scheduling in Grids is almost
exclusively addressed by practitioners looking for suitable
implementations. There are only very few theoretical re-
sults on Grid scheduling. Most of them address divisible
load scheduling in Grids, see, for instance, Robertazzi and
Yu [9]. Fujimoto and Hagihara [3] discuss the scheduling
of sequential independent jobs on systems with processor
speeds that vary over time and between different machines.
They claim that the makespan objective is not applicable
and propose a different criterion based on total processor
cycle consumption. Tchernykh et al. [12] address the per-
formance of various 2-stage algorithms with respect to the
makespan objective. Their model is similar to our model as
explained in Section 2. They present offline algorithms with
an approximation factor of 10.

In most real scheduling problems, the large number and
the type of constraints almost always prevent theoretical
studies from obtaining meaningful results. This is partic-



ularly true for Grids which are subject to heterogeneity, dy-
namic behavior, many different types of jobs, and other re-
strictions. Therefore, the model of any theoretical study
on Grid scheduling must be an abstraction of reality. On
the other hand, key properties of Grids should be observed
to provide benefits for real installations. As computational
Grids are often considered as successors of single parallel
computers we start with a simple model of parallel com-
puting and extend it to computing on a Grid. One of the
most basic models is due to Garey and Graham [4] who as-
sume a multiprocessor with identical processors as well as
independent, rigid, parallel jobs with unknown processing
times. Any arbitrary and sufficiently large set of concur-
rently available processors on a single machine can be used
to exclusively execute such a job. As already stated, this
model neither matches every real installation nor all real
applications. But the assumptions are nonetheless reason-
able. For instance, parallel computers with their expensive
network are only worth the investment if they process par-
allel jobs. Moreover, almost all modern networks support
arbitrary partitions of the processors. Although there may
be differences between the processors of a parallel computer
regarding main memory or some other properties, these pro-
cessors are very similar in general. While some applications
are able to handle different degrees of parallelism others
are specifically built to run efficiently on a given number
of processors. Further, there is almost always a limit to the
exploitable parallelism of an application. As the efficiency
of a parallel application implementation with interprocessor
communication may be severely affected by other jobs us-
ing the same processor, these processors are often provided
exclusively to a single application. This approach also ad-
dresses security concerns. Typically, there are many users
on a multiprocessor. Therefore, the jobs are independent or
at least, the scheduling system is not aware of dependencies
between those jobs. Although some users may have knowl-
edge about the processing time of their jobs, some studies
show that user estimates are unreliable, see Lee et al. [6].
These observations indicate that Garey and Graham’s model
is still a valid basic abstraction of a parallel computer and
its applications.

Our Grid model simply extends this model by assum-
ing that the processors are arranged into several machines
and that parallel jobs cannot run across multiple machines.
In practice, there are some jobs that make use of multi-
site execution but these jobs almost never occur in produc-
tion Grids. Frequently, the multiprocessors in a Grid are
installed at different times resulting in different hardware
types. Therefore, a computational Grid often consists of
heterogeneous parallel machines. However, one can argue
that an identical processor model is still reasonable as mod-
ern processors mainly differ in the number of cores rather
than in processor speed. Moreover in the area of high per-

formance computing, parallel machines are typically rela-
tively new and of current or recent technology. But even
when we ignore those arguments there are still two main
properties of a Grid: separate parallel machines and proces-
sor heterogeneity. We should only address both properties
in a single model once we have understood models with a
single property well enough. Processor heterogeneity is al-
ready subject of the classic machine models Qm and Rm [8]
while only Tchernykh et al. [12] provide some results for
the separate parallel identical machine model. Therefore,
the focus of this paper is on this property of Grids.

Regarding the job model, we stick to the submission-
over-time version of Garey and Graham, see Naroska and
Schwiegelshohn [7]: Jobs are independent and submitted
over time. A job is characterized by its submission time, its
fixed degree of parallelism (rigid jobs), and its processing
time that is unknown until the job has completed its exe-
cution (nonclairvoyant jobs). A job can only be executed
on processors belonging to the same machine in an exclu-
sive and non-preemptive fashion, that is in a space sharing
mode. However, note that we do not require that a job is
allocated to processors immediately at its submission time
as in some online problems, see Albers [1]. This demand
does not make much sense for nonclairvoyant scheduling as
it would lead to a very bad load balance in the worst case.
Moreover, jobs may migrate between queues in many real
systems if other machines are idle.

From a system point of view, it is typically the goal of
a Grid scheduler to achieve load balance in the Grid. In
scheduling theory, this is commonly represented by the ob-
jective of makespan minimization. Although the makespan
objective has some shortcomings particularly in online sce-
narios with independent jobs, it is easy to handle and there-
fore frequently used even in these scenarios, see, for in-
stance, Albers [1]. Hence, we also apply this objective
in this paper. As usual in the online context, we evaluate
the scheduling algorithms by determining upper bounds of
competitive factors, that is, we consider the ratio between
the makespan of our schedule and the optimal makespan.

After this introduction, we first formally introduce our
model in Section 2. Then we show that the Garey and
Graham bound 2 − 1

m cannot be guaranteed in a Grid by
any polynomial time algorithm unless P = NP . Sec-
tion 4 gives examples demonstrating that the list scheduling
algorithm cannot guarantee a constant competitive bound
even if the list is sorted by job parallelism in descending or-
der. In Section 5, we propose a new Grid scheduling algo-
rithm and prove a competitive factor of 3 for the concurrent-
submission case. Finally, this algorithm is extended to the
submission-over-time case yielding a competitive factor of
5.



2. Model

The Grid contains m machines. We say that machine Mi

has size mi if it comprises mi processors. All processors in
the Grid are identical. For the purpose of easier descrip-
tions, we assume a machine indexing such that mi−1 ≤ mi

holds and introduce m0 = 0. We use GPm to describe the
Grid machine model.

Jobs are independent and submitted over time. Job Jj

is characterized by its processing time pj > 0, its sub-
mission time rj ≥ 0, and its fixed degree of parallelism
sizej ≤ sm, that is the number of processors that must be
exclusively allocated to the job during its processing. We
consider nonclairvoyant scheduling that is, the processing
time of a job only becomes known after a job has completed
its execution. Further, we allow neither multisite scheduling
nor preemption, that is, job Jj must be executed on sizej

processors on one machine without interruption. We intro-
duce the notation i = a(j) to indicate that job Jj will be
executed on machine Mi. The completion time of job Jj in
schedule S is denoted by Cj(S). However, we may simply
use Cj if the schedule is non ambiguous. A schedule is fea-
sible if rj + pj ≤ Cj holds for all jobs Jj and if at all times
t and for each machine Mi, at most mi processors are used
on this machine Mi, that is, we have

mi ≥
∑

Jj |Cj−pj≤t<Cj∧i=a(j)

sizej

for each machine Mi.
It is our goal to find a schedule that minimizes the

makespan Cmax(S) = maxj{Cj(S)}. In the short three-
field notation machine model—constraints—objective pro-
posed by Graham et al. [5], this problem is characterized
as GPm|sizej |Cmax. The optimal makespan of a Grid
scheduling problem instance is denoted by

C∗max = max
legal schedules S

Cmax(S).

Remember that we establish the allocation of jobs to ma-
chines only when the processors are actually available.

We evaluate the performance of an online algorithm by
determining its competitive factor or an upper bound for it.
Here, the competitive factor of Algorithm A is the maxi-
mum of Cmax(S)

C∗max
for all problem instances if schedule S is

produced by A.
In this paper, we first address the concurrent-submission

case (rj = 0) and then extend the results to the submission-
over-time scenario.

3. Approximability

First we want to determine a lower bound for the com-
petitive factor. To this end, we consider the corresponding

clairvoyant problem with rj = 0. This problem is NP hard
as Pm||Cmax is a special case of GPm|sizej |Cmax. More-
over, it is also not easy to find good approximation algo-
rithms as shown in the next theorem.

Theorem 3.1 There is no polynomial time algorithm that
always produces schedules S with Cmax(S)

C∗max
< 2 for

GPm|sizej |Cmax and all input data unless P = NP .

Proof. Let assume m = 2 and m1 = m2. Further, there
are n jobs with

∑
j sizej = 2m1 and pj = 1 for all jobs.

As a not nondelay schedule can easily be transformed into
a nondelay schedule without increasing the makespan, see
Pinedo [8], it is sufficient to consider only nondelay sched-
ules. For the given instances, every nondelay schedule will
either produce Cmax = 1 or Cmax = 2. Therefore, every
algorithm that guarantees Cmax

C∗max
< 2 must produce an op-

timal schedule for the described input data. However, this
requires a solution to the partition problem which is NP hard
in the ordinary sense. ut

4. List Scheduling

Due to Theorem 3.1, the multiprocessor list schedul-
ing bound 2 − 1

m , see Garey and Graham [4] (concurrent-
submission) as well as Naroska and Schwiegelshohn [7]
(submission-over-time), does not apply to Grids. Even
more, the next example shows that already in the
concurrent-submission case, list scheduling cannot guaran-
tee a constant bound for Cmax

C∗max
for all problem instances.

Note that a similar example has already been presented by
Tchernykh et al. [12].

Example 4.1 Let k > 1 be an integer. In our Grid, we
assume one machine Mm with mm = 2k processors, and
there are 2 · 4κ−1 identical machines with 2k−κ processors
for each κ with 1 ≤ κ ≤ k. This yields a total of 22k

processors and m = 1 + 2 4k−1
3 machines in the Grid.

Further, we have 22(k−κ) jobs with sizej = 2κ for all
0 ≤ κ ≤ k resulting in a total of 4k+1−1

3 jobs. All those
jobs have pj = 1.

Assume that the jobs are sorted by parallelism in as-
cending order. Then list scheduling will start all jobs with
sizej = 1 concurrently at time 0 on all machines. At time
1, all jobs with sizej = 2 begin their processing on all ma-
chines with mi ≥ 2 while all machines with mi = 1 must
remain idle. The process repeats until finally, the last job
with sizej = 2k starts at time k on machine Mm yielding
Cmax = k + 1, see Fig. 1.

However, if the list is sorted by parallelism in descend-
ing order then each job Jj is allocated to a machine Mi

such that size and parallelism match (sizej = ma(j)). This
produces the optimal makespan C∗max = 2.



(a) List schedule

(b) Optimal schedule

Figure 1. Schedules of Example 4.1: (a) Worst Case List Schedule (b) Optimal Schedule

Obviously, this result is due to a load imbalance as ma-
chines with many processors execute jobs with little par-
allelism causing parallel jobs waiting for execution. This
observation suggests to sort the list by job parallelism in de-
scending order such that highly parallel jobs are scheduled
first whenever there is a choice.

Unfortunately, this approach does not guarantee a con-
stant competitive factor either. As a comprehensive exam-
ple is rather complicated we explain the two main parts of
the example separately. Example 4.2 demonstrates that list
scheduling may still prevent several parallel jobs being ex-
ecuted concurrently on a single machine even if the list is
sorted by job parallelism in descending order.

Example 4.2 Consider machine Mi in the Grid such that µ
is the number of processors of the largest machine with less
processors than mi.

For each k with µ + 1 ≤ k ≤ mi − 1, we have one
job Jj with a very small processing time (pj → 0) and
sizej = k. The small processing time assures that the ex-
ecution of these parallel jobs does not require much time
although they must be executed one after the other. Fur-
ther, there is a large number of sequential jobs (sizej = 1)
with various processing times. As we address nonclairvoy-
ant scheduling the sequential jobs cannot be distinguished
at the time of scheduling. We assume that the processing
times of the sequential jobs are large enough such that each
sequential job completes after the last of the above men-
tioned parallel jobs has completed.

List scheduling with sorting by parallelism in descending
order will start the job with sizej = mi−1 at time 0. At the
same time, a sequential job is started as no parallel job fits
onto this machine anymore. After completion of the parallel
job, the algorithm concurrently starts the job with sizej =
mi−2 and another sequential job. This process is continued
and produces a schedule in which a job with sizej = µ + 1

si=9

Figure 2. Schedule of Example 4.2

is running concurrently with mi−µ−1 sequential jobs, see
Fig. 2. This situation will not change later unless at least
two sequential jobs complete at the same time. Due to the
small processing time of the parallel jobs, the execution of
this schedule takes only very little time. If there are several
machines with the same number of processors, we simply
multiply the jobs accordingly.

Due to Example 4.2, we can now consider an example
where list scheduling is based on sorting by parallelism in
descending order, and on each machine Mi with mi > 1,
one parallel job is started concurrently with several sequen-
tial jobs almost at time 0.

Example 4.3 Let k > 2 be any integer. Our Grid contains
k different types of machines such that there are bκ ma-
chines of size mκ = 2

(κ+2)(κ−1)
2 for each 1 ≤ κ ≤ k. We

say that these machines have type κ. Further, there are aκ

jobs of type κ for each 1 ≤ κ ≤ k, that is, those jobs have
parallelism sizeκ = 2

κ(κ−1)
2 . Note that



mκ

sizeκ
=

2
(κ+2)(κ−1)

2

2
κ(κ−1)

2

= 2κ−1

jobs of type κ can be executed concurrently on a ma-
chine of type κ. All jobs have a processing time of about
1. However, the processing times are selected such that no
two jobs complete at exactly the same time on the same ma-
chine in list schedule S. In the optimal schedule, only jobs
of type κ are executed on machines of type κ. This pro-
duces C∗max ≈ 2 if aκ ≤ 2bκ · mκ

sizeκ
= bκ · 2κ holds for all

1 ≤ κ ≤ k and if there is at least one κ with aκ > bκ ·2κ−1.
In list schedule S, only one job of type κ is started on

each machine of type κ at approximately time t with t <
κ − 1 being a non negative integer. At approximately time
κ, all remaining jobs of type κ are started on all machines of
type κ or higher such that at most sizeκ processors become
idle on any such machine at the same time for κ 6= k, see
Fig. 3. This schedule has the makespan Cmax(S) ≈ k.

Finally, we need to determine appropriate values for aκ

and bκ. To this end, we use a backward recursion: bk = 1
and ak = 2k−1 + k − 1. For 1 ≤ κ < k, we select

bκ = d
∑k

h=κ+1 bh · (mh − sizeh)
mκ − sizeκ(κ− 1)

e

aκ =

∑k
h=κ+1 bh · (mh − sizeh)

sizeκ
+

+bκ(κ− 1 +
mκ

sizeκ
).

Note that this selection is always possible as we have
2i− i ≥ 1 for all non negative integer i. Further, bκ

mκ

sizeκ
<

aκ ≤ 2bκ
mκ

sizeκ
holds for all 1 ≤ κ ≤ k.

Table 1 gives the numbers for k = 3 and k = 4. As this
example already requires very large numbers of machines
and jobs even for a small k, it is mainly of theoretical in-
terest. Also note that this list scheduling algorithm is not a
distributed one.

Example 4.3 indicates that it may be difficult to deter-
mine a fixed order of the job list to guarantee a constant
competitive factor for the Grid scheduling problem. There-
fore, Grid scheduling is more difficult than multiprocessor
scheduling.

5. Grid Scheduling Algorithm

As conventional list scheduling is not suitable for Grids,
we present an approach that uses several lists. Each of
these lists does not require any specific order. We start by

κ 1 2 3
sizeκ 1 2 8
mκ 1 4 32
aκ 112 56 6
bκ 56 14 1

κ 1 2 3 4
sizeκ 1 2 8 64
mκ 1 4 32 512
aκ 4480 2240 224 11
bκ 2240 560 28 1

Table 1. Parameters of Example 4.3 with k = 3
and k = 4

adopting the commonly known lower bound for the opti-
mal makespan in the concurrent-submission case to the Grid
scheduling problem:

C∗max ≥ max{max
j

pj , max
1≤i≤m

∑
j|sizej>mi−1

pj · sizej∑m
ν=i mν

}
(1)

Compared to the bound of the Pm||Cmax problem, this
bound also considers the unavailability of small size ma-
chines for the processing of highly parallel jobs due to the
lack of multisite job execution.

The Grid scheduling algorithm is based on different ini-
tial allocations of the jobs to the various machines. Those
allocations are represented with the help of job categories
for each machine.

Definition 5.1 For every machine Mi, there are three dif-
ferent categories of jobs:

1. Ai = {Jj |max{mi

2 ,mi−1} < sizej ≤ mi}
2. Bi = {Jj |mi−1 < sizej ≤ mi

2 }
3. Hi = {Jj |mi

2 < sizej ≤ mi−1}

Set Ai contains all jobs that cannot execute on the pre-
vious (next smaller) machine and require more than 50% of
the processors of machine Mi. Set Bi contains all jobs that
cannot execute on the previous machine but require at most
50% of the processors of machine Mi. Set Hi contains all
jobs that require more 50% of the processors of machine Mi

but can also be executed on the previous machine.
Note that for each job Jj , there is exactly one index i

with mi−1 < sizej ≤ mi as the mi are ordered. If mi−1 ≥
mi

2 then we have Jj ∈ Ai otherwise job Jj is either in Ai

or in Bi. Therefore, each job Jj belongs to exactly one
category A or B. Obviously, either Bi = ∅ or Hi = ∅
hold for each machine Mi. A job in category Bi cannot
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Figure 3. Schedules of Example 4.3 for k = 3: (a) Worst Case List Schedule (b) Optimal Schedule



Algorithm Grid Concurrent-Submission

for i ← 1 to m do
Li ← Ai

Si ← Hi

endfor
Update
repeat

for i ← 1 to m do
while enough processors are idle on machine i do

schedule a job from Li on machine i
remove the scheduled job from all lists Lk

if any list Lk = ∅
Update

endif
endwhile

endfor
until all jobs are scheduled

Figure 4. Grid Scheduling Algorithm for the
Concurrent-Submission Case (rj = 0)

belong to any other category while a job in category Hi

must also belong to either category Ai−1 or category Hi−1.
Therefore, Hi ∩Hi−1 6= ∅ requires Ai−1 ⊆ Hi.

Next, we present the Grid scheduling algorithm for the
concurrent-submission case in Fig. 4. This algorithm uses
a main list Li and a support list Si for each machine Mi.
List Li contains all jobs that are ready for scheduling on
machine Mi while list Si simply keeps track of the jobs in
Hi that have not yet been transferred to Li. Note that a job
may be on the lists of several machines at the same time.

Procedure Update in Fig. 5 is a key component of the
algorithm. It maintains the lists of the various machines.
If there is no job ready for scheduling on machine Mi

(Li = ∅) then jobs from Hi are enabled for scheduling on
machine Mi if they are already available for scheduling on
machine Mi−1. If this type of job does not exist (Hi = ∅)
and no jobs are ready for scheduling on machine Mi then all
jobs in Bi are enabled for scheduling on machine Mi. Note
that it is important to process these sets in ascending order
of machine indexes when using the sequential program no-
tation. We assume that the processing time of this procedure
does not introduce any additional idle time into the sched-
ule. Also remember that it is not the intention of this paper
to present an efficient implementation of the procedure but
to demonstrate the algorithmic concept.

Consider a job j that is in Hi and Ai−1. The algo-
rithm places this job into Li−1 during startup. Procedure
Update will enter it into Li once all jobs from Ai are sched-
uled unless j has already started. A job j ∈ Hi+1 ∩ Ai−1

will become element of Li+1 once all jobs from Ai+1 and

Procedure Update

for i ← 1 to m do
if Li = ∅

if i 6= 1 and Si 6= ∅
Li ← Li−1 ∩ Si

Si ← Si \ Li

elseif Bi 6= ∅
Li ← Bi

endif
if i 6= 1 and Li−1 6= ∅ and Si = ∅

Li ← Li−1

endif
endif

Figure 5. Update of Lists for the Concurrent-
Submission Case

Ai∩Hi+1 are scheduled and so on. Procedure Update guar-
antees that a list Li is not empty if there is a job in any list
Li′ with i′ < i.

Algorithm Grid Concurrent-Submission in Fig. 4 first
initializes the lists Li and Si for all machines. As list Li

may be empty for some machines, Procedure Update is also
called once immediately afterwards. Later, Procedure Up-
date is called again if the last job of a list Li has been started
on any machine.

Next, we show that Algorithm Grid Concurrent-
Submission prevents intermediate schedule intervals with
the majority of processors of a machine being idle.

Lemma 5.2 Algorithm Grid Concurrent-Submission guar-
antees that on every machine in the Grid more than 50%
of its processors are always busy executing jobs before the
starting time of the last job on this machine.

Proof. Assume that we have

• at least mi

2 idle processors on some machine Mi at
some time t and

• a job Jj with Cj − pj > t and a(j) = i.

Remember that jobs from Ai and Hi are scheduled on ma-
chine Mi first. Therefore, more than mi

2 processors are al-
ways busy on machine Mi until all jobs from Ai and Hi

are completed. Further, no job requiring at most mi

2 proces-
sors can still be on list Li at time t as enough processors are
idle to start this job immediately. Therefore, list Li must be
empty at time t. As job Jj is still unscheduled at time t it
must belong to Ai′\Hi or to Bi′ for some machine Mi′ with
i′ < i resulting in Li′ 6= ∅ at time t . However, procedure
Update guarantees that list Li is not empty if there is a job
in any list Li′′ with i′′ < i. This is a contradiction. ut



Unfortunately, Examples 4.1 and 4.3 demonstrate that
Lemma 5.2 is not sufficient to prove a constant competitive
factor. In addition, we need a balanced “utilization” of the
machines in the Grid. In Lemma 5.3, we demonstrate that
in case of an unbalanced utilization, no resources of highly
parallel machines are wasted to execute jobs with little par-
allelism.

Lemma 5.3 Let Jj′ be any job with Cj′(S) = Cmax

in a schedule S produced by Algorithm Grid Concurrent-
Submission. If there is a machine Mi with i < a(j′) and at
least mi

2 processors being idle at time t < Cj′−pj′ then Al-
gorithm Grid Concurrent-Submission will produce a sched-
ule S′ with the same makespan (Cmax(S′) = Cmax(S)) if
all jobs in sets Ai′ and Bi′ with i′ ≤ i are removed.

Proof. The claim is clearly correct if no machine Mk with
k > i executes any job in sets Ai′ or Bi′ with i′ ≤ i.

Let us assume that there is a job Jj in set Ai′ or set Bi′

with i′ ≤ i and that this job is executed on machine Mk with
k > i. Due to Procedure Update, job Jj can only enter Lκ

for some i < κ ≤ k if all jobs from Aκ and Bκ are already
scheduled. Therefore, removing all jobs in categories Ai′

and Bi′ with i′ ≤ i will not influence the completion time
of any job in sets Aκ and Bκ with i < κ ≤ k.

Finally, we have Jj′ ∈ Aν or Jj′ ∈ Bν for some machine
Mν with ν > i as job Jj′ did not start on machine Mi at or
before time t. Therefore, the removal of all jobs in sets Ai′

and Bi′ with i′ ≤ i cannot reduce Cmax(S). ut

Now, we are ready to prove the competitive factor of Al-
gorithm Grid Concurrent-Submission.

Theorem 5.4 Algorithm Grid Concurrent-Submission
guarantees Cmax

C∗max
< 3 for all input data and all Grid

configurations in the concurrent-submission case.

Proof. Let Jj′ be any job with Cj′(S) = Cmax in a sched-
ule S produced by Algorithm Grid Concurrent-Submission.
If there is a machine Mi with i < a(j′) and at least mi

2 pro-
cessors being idle before Cj′ − pj′ then we remove all jobs
in sets Ai′ and Bi′ with i′ ≤ i. This does not reduce the
ratio Cmax

C∗max
as Cmax remains unchanged due to Lemma 5.3

and C∗max cannot increase. If necessary we can execute this
process repeatedly.

Due to Lemma 5.3, we can assume that there is a ma-
chine Mk such that for each machine Mκ with k ≤ κ ≤
a(j′), more than 50% of the processors are always busy be-
fore time Cj′ − pj′ and that all machines Mi′ with i′ < k
can be ignored for the purpose of the analysis as they cannot
execute any job from Aκ and Bκ with κ > k.

Now assume that there is some time t < Cj′ − pj′ such
that at most 50% of the processors of some machine Mi′

with i′ > a(j′) are executing jobs at t in S. Then we have

Li′ = ∅ and La(j) 6= ∅ at t. Again this is not possible due
to the execution of Procedure Update.

This leads to

Cmax(S) = pj′ + Cj′ − pj′

< pj′ + 2 ·
∑

Jj∈Aν∪Bν |ν≥k pj · sizej∑
ν≥k mν

≤ C∗max + 2C∗max = 3C∗max.

ut

However, the ratio of Theorem 5.4 is not tight. Intu-
itively, tightness would require a Grid schedule with only
50% of the processors being used while the optimal sched-
ule executes the same jobs without idle processors. In addi-
tion, at the end of the Grid schedule, there must be another
long running job that cannot start earlier. We are not able to
find such a problem instance but we can present an example
showing that this algorithm produces competitive ratios that
come arbitrarily close to 2.5 for some input data and Grid
configurations.

Example 5.5 Consider a simple Grid mit m = 2, m1 = 1,
and m2 = 21. There are 7 jobs in A1: 6 identical jobs
with sizej = 1 and pj = 1, and the last job in this list
with sizej = 1 and pj = 4. There are 2 jobs in A2: the
first job with sizej = 11 and pj = 3, and the last job with
sizej = 11 and pj = ε → 0. Finally, B2 contains first
one job with sizej = 8 and pj = 3, then three identical
jobs with sizej = 7 and pj = 1, and at the end, one job
with sizej = 8 and pj = ε → 0. Both jobs with pj = ε
are only necessary to prevent that A2 and B2 become empty
prematurely.

In schedule S, all jobs in A1 are assigned to machine M1.
The longest running job starts last at time 6 and determines
the makespan Cmax(S) = 10. This is only possible if L2

does not become empty before time 6. The long running job
in A2 starts at time 0 and the other one follows immediately.
Therefore, B2 becomes L2 at time 3 and the first job of B2

starts at time 3 and completes at time 6. The next three jobs
of B2 execute concurrently to the first job and start at times
3, 4, and 5, respectively while the last one starts at time 6,
see Fig. 6. Hence, L2 becomes empty at time 6.

It is easy to assemble an optimal schedule with C∗max =
4 + ε, see Fig. 6. This produces a ratio of

lim
ε→0

Cmax(S)
C∗max

= lim
ε→0

10
4 + ε

= 2.5.

A more complicated example yields a lower bound
for the competitive factor of Algorithm Grid Concurrent-
Submission that comes arbitrarily close to 21

8 = 2.625.
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Figure 6. Schedules of Example 5.5: (a) Schedule of Algorithm Grid Concurrent-Submission (b) Op-
timal Schedule

6. General Problem with Submission over
Time

Finally, we address the general submission-over-time
problem. Algorithm Grid Concurrent-Submission can be
modified to solve this problem by using the results of
Shmoys, Wein, and Williamson [11]. This will increase the
competitive factor by a factor of 2 and result in Cmax(S)

C∗max
<

6.
However, in practice, this kind of algorithm is hardly

acceptable as it requires newly submitted jobs to wait for
a significant time span even if the job is not highly par-
allel and enough processors are available. Therefore, we
want to examine a simple modification of Algorithm Grid
Concurrent-Submission that generates a better competitive
factor and may be more relevant in practice.

First, we change sets A, B, and H from being static to
being dynamic: Once a job is scheduled it is removed from
all sets and lists. On the other hand, any newly submitted
job is introduced into the appropriate sets. Note that the
difference between Hi and Si becomes smaller but it still
exists as a job is removed from Hi after scheduling and from
Si after being introduced into Li, respectively.

Second, we modify Algorithm Grid Concurrent-
Submission by deleting all lists Li and Si whenever a new
job is submitted and restarting the procedure Update for
initialization purposes. We call the resulting method Al-
gorithm Grid Over-Time-Submission. Certainly, an suitable
implementation can avoid some of those list modifications

and execute other modifications in an efficient manner. But
it is not the intention of this paper to address implementa-
tion efficiencies.

The performance analysis of Algorithm Grid Over-Time-
Submission is heavily based on the analysis of Algorithm
Grid Concurrent-Submission in Section 5.

Theorem 6.1 Algorithm Grid Over-Time-Submission
guarantees Cmax

C∗max
< 5 for all input data in the over-time-

submission case.

Proof. Let assume that r is the submission time of the
last job in schedule S. After time r, the mechanisms of
Algorithm Grid Concurrent-Submission apply. However,
while Algorithm Grid Concurrent-Submission was previ-
ously starting with all processors being idle now processors
may be busy executing some jobs that have been submit-
ted earlier. Jobs from sets A or H may have to wait until
enough processors are available. During this time, mi

2 pro-
cessors or more may be idle on machine Mi. But as all
lists Li have been emptied this time span is limited to the
maximum processing time of any job. Therefore, the condi-
tions of Lemmas 5.2 and 5.3 apply after time r + maxj pj

at the latest. As the bounds of Equation (1) and inequality
r < C∗max hold in the over-time-submission case and we
have

Cmax(S) < r + max
j

pj + 3C∗max < 5C∗max.

ut



As with Algorithm Grid Concurrent-Submission the
bound of Theorem 6.1 is not tight. But it is possible to show
that the lower bound for the competitive factor of Algorithm
Grid Over-Time-Submission comes close to 4.5.

7. Conclusion

In this paper, we present a Grid model that covers the
main properties of Grid computing systems in our view.
Based on this model, we analyze a fundamental Grid
scheduling problem that has been derived from one of earli-
est and most basic multiprocessor scheduling problems. To
our knowledge, this is the first comprehensive theoretical
analysis of Grid scheduling. We show that Grid schedul-
ing is more complex than the corresponding multiprocessor
scheduling problem and that the well known list scheduling
algorithm cannot guarantee a constant competitive ratio for
the makespan, although it performs very well in the multi-
processor case. This result even holds if the list is sorted
by job parallelism in descending order. The given examples
seem to indicate that no static list ordering based on job par-
allelism can guarantee a good Grid schedule independent of
the Grid configuration.

Further, we present a new algorithm that is based on sev-
eral lists and guarantees a competitive ratio of 3 in a sce-
nario with all jobs being submitted concurrently. As we
consider nonclairvoyant jobs this problem also has some
online properties. Then we extend this algorithm to the gen-
eral submission-over-time scenario producing a competitive
factor of 5. To our knowledge, this is first time a constant
competitive factor has been proved for this type of problem.

Although we do not address implementation details of
our algorithms in this paper we like to point out that signif-
icant parts of our algorithm can be implemented in a dis-
tributed fashion: Each machine has its own job lists and
only schedules jobs from these lists. Originally, each job is
allocated to exactly one list Ai or Bi. Assuming a global
Grid information system this can be achieved using a sim-
ple master-slave approach. If there are no jobs available
in the lists of a machine, this machine starts to use the list
of a neighboring machine resulting in local communication
only, that is, a machine may “steal” a job from a neigh-
bor. But dynamic information regarding the availability
of jobs must still be shared among several machines. Al-
though implementing the algorithm by using job stealing
from a neighboring machine may influence the quality of
the schedule in practice, the algorithm seems suitable for
implementation in real systems. But in these real systems,
other properties of computing Grids must be considered as
well. Nevertheless, the proposed algorithm may serve as
a starting point for heuristic scheduling algorithms that are
implemented in real computing Grids.
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