Editor-in-Chief

Elaine Lawrence, University of Technology - Sydney, Australia

Editorial Advisory Board

- Edward Clarke Conley, Cardiff University School of Medicine/School of Computer Science, UK
- Bernd Kraemer, FernUniversitaet in Hagen, Germany
- Dumitru Dan Burdescu, University of Craiova, Romania
- Borka Jerman-Blazic, Jozef Stefan Institute, Slovenia
- Charles Doarn, University of Cincinnati / UC Academic Health Center, American telemedicine Association, Chief Editor - Telemedicine and eHealth Journal, USA

EHealth and eTelemedicine

- Edward Clarke Conley, Healthcare ICT Research/Diabetes Research Unit, Cardiff University School of Medicine, Welsh e-Science Centre/Cardiff University School of Computer Science, UK
- George Demiris, School of Medicine/Biomedical and Health Informatics, University of Washington, USA
- Charles Doarn, University of Cincinnati / UC Academic Health Center, American telemedicine Association, Chief Editor - Telemedicine and eHealth Journal, USA
- Daniel L. Farkas, Cedars-Sinai Medical Center - Los Angeles, USA
- Wojciech Glinkowski, Polish Telemedicine Society / Center of Excellence "TeleOrto", Poland
- Amir Hajjam-El-Hassani, University of Technology of Belfort Montbéliard, France
- Paivi Hamalainen, The National Institute for Health and Welfare - Helsinki, Finland
- Arto Holopainen, eHIT Ltd / Finnish Society of Telemedicine and eHealth, Finland
- Maria Teresa Meneu Barreira, Universidad Politecnica de Valencia, Spain
- Joel Rodrigues, University of Beira Interior, Portugal
- Vicente Traver Sacedo, Universidad Politecnica de Valencia, Spain

Electronic and Mobile Learning

- Dumitru Dan Burdescu, University of Craiova, Romania
- Maiga Chang, Athabasca University, Canada
- Anastasios A. Economides, University of Macedonia - Thessaloniki, Greece
- Adam M. Gadomski, ENEA, Italy
- Bernd Kramer, FernUniversitat in Hagen, Germany
- Elaine Lawrence, University of Technology - Sydney, Australia
- Kalogiannakis Michail, University Paris 5 - Rene Descartes, France
- Masaya Okada, ATR Knowledge Science Laboratories - Kyoto, Japan
- Demetrios G Sampson, University of Piraeus & CERTH, Greece
Advanced Knowledge Representation and Processing

- Freimut Bodendorf, University of Erlangen-Nuernberg Germany
- Borka Jerman-Blazic, Jozef Stefan Institute, Slovenia
- Andrew Kusiak, The University of Iowa, USA
- Selmin Nurcan, University Paris 1 Pantheon Sorbonne, France
- Jeff Riley, Hewlett-Packard Australia, Australia
- Lars Taxen, Linkoping University - Norrkoping, Sweden

- Steve Wheeler, University of Plymouth, UK
CONTENTS

A Micro-Biomanipulation Training System based on Mixed-Reality 73 - 81
Leonardo Mattos, Italian Institute of Technology (IIT), Italy
Darwin Caldwell, Italian Institute of Technology (IIT), Italy

A Biologically Accurate Simulation of the Locomotion of Caenorhabditis elegans 82 - 93
Roger Mailler, University of Tulsa, USA
Jacob Graves, University of Tulsa, USA
Nathan Willy, University of Tulsa, USA
Trevor Sarratt, University of Tulsa, USA

A practiced-based technique for learners to better understand scholarly articles: An empirical study 94 - 102
Beebee Chua, UTS, Australia
Danilo Bernardo, UTS, Australia

Visual Instrument Guidance in Minimally Invasive Robot Surgery 103 - 114
Christoph Staub, Technical University Munich, Germany
Giorgio Panin, Technical University Munich, Germany
Alois Knoll, Technical University Munich, Germany
Robert Bauernschmitt, German Heart Center Munich, Germany

Applying the Theory of Constraints to Health Technology Assessment 115 - 124
P. Johan Groop, Aalto University, Finland
Karita H. Reijonsaari, Aalto University, Finland
Paul M. Lillrank, Aalto University, Finland

Nonlinear Spectral Technique to Analyze White Spot Syndrome Virus Infection 125 - 132
Mario Alonso Bueno-Ibarra, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR - Sinaloa), México
Maria Cristina Chávez-Sánchez, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD - Mazatlán), México
Josué Álvarez-Borrego, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), México

An Adaptive Entropic Thresholding Technique for Image Processing and Diagnostic Analysis of Microcirculation Videos 133 - 142
Nazanin Mirshahi, Virginia Commonwealth University, USA
Sumeyra Demir, Virginia Commonwealth University, USA
Kevin Ward, Virginia Commonwealth University, USA
Experiences and Preferences of Patients Regarding a Rheumatology Interactive Health Communication Application: A qualitative Study
Rosalie van der Vaart, University of Twente, Enschede, The Netherlands
Constance Drossaert, University of Twente, Enschede, The Netherlands
Erik Taal, University of Twente, Enschede, The Netherlands
Mart van de Laar, University of Twente, Medisch Spectrum Twente, Enschede, The Netherlands

Learning Contexts as Ecologies of Resources: A Unifying Approach to the Interdisciplinary Development of Technology Rich Learning Activities
Rosemary Luckin, The London Knowledge Lab The Institute of Education London, UK

Africa’s Telenursing Today (and Tomorrow?)
Sinclair Wynchank, MRC, South Africa
Jill Fortuin, MRC, South Africa

What Motivates Faculty to Adopt Distance Learning? Data Collected from a Faculty Development Workshop Called “Build a Web Course”
Tamara Michele Powell, Kennesaw State University, USA

A Process Model for Establishment of Knowledge-Based Online Control of Enterprise Processes in Manufacturing
Daniel Metz, University of Siegen, Germany
Sachin Karadgi, University of Siegen, Germany
Manfred Grauer, University of Siegen, Germany

Saliency Detection Making Use of Human Visual Perception Modelling
Cristina Oprea, Politehnica University of Bucharest, Romania
Constantin Paleologu, Politehnica University of Bucharest, Romania
Ionut Pirnog, Politehnica University of Bucharest, Romania
Mihnea Udrea, Politehnica University of Bucharest, Romania

Core-Body Temperature Acquisition Tools for Long-term Monitoring and Analysis
João M. L. P. Caldeira, University of Beira Interior, Portugal
Joel J. P. C. Rodrigues, University of Beira Interior, Portugal
José A. F. Moutinho, University of Beira Interior, Portugal
Marc Gilg, University of Haute Alsace, France
Pascal Lorenz, University of Haute Alsace, France
Abstract - In this paper a novel spectral technique based on K-Law Fourier nonlinear methodology is developed to classify White Spot Syndrome Virus inclusion bodies found in images from infected shrimp tissue samples. Shrimp culture is expanding in the world due to their high demand and price. This rapid increase in cultured shrimp production was achieved by geographical expansion and technological advances in reproduction in captivity of the white shrimp *Penaeus vannamei*, larval rearing, artificial diet and intensification in growth out systems. However, diseases are one of the major constraints for the sustainable increase of shrimp production. The white spot syndrome virus is a pandemic disease where frequently 100% mortality may occur within 2-3 days. However, several techniques have been implemented and developed for viral and bacterial analysis and diagnostic's tasks; histology is still considered the common tool in medical and veterinary for research and diagnostics tasks [3][4][5]. The contribution of aquaculture to world supply of fish, crustaceans, mollusks and other aquatic animals has continued to grow, and has gone from a 3.9% of total production in weight in 1970 to 36.0% in 2006. The world's supply of crustaceans by aquaculture has grown rapidly in the last decade, and has reached 42% of the world production in 2006 and, in that same year, provided the 70% of shrimps and prawns (peneidos) produced worldwide [6]. *Penaeus vannamei* is the most important shrimp species in terms of aquaculture production and is naturally present along the Pacific coast of Central and South America [7].

This species was originally cultured in North, Central and South American countries but at the end of the 1970s, this species was introduced in Asia [8]. In spite of this important increase of shrimp production, the shrimp culture industry has been affected since the 80’s with different important diseases [4], being the viruses the most significant pathogens in shrimp. Viral diseases have caused considerable losses of production and jobs, reduced earning, export restrictions, failure and closing of business and decreased confidence of consumers [9].

The white spot syndrome virus (WSSV) is considered as a serious pathogen and is actually a pandemic disease causing important effects in production in many countries with the consequent social impact of many Asian and American countries. México traditionally is considered a privilege country where extensive commercial shrimp aquaculture can be exploited, due its weather and location close to the biggest consumer of the world, United States of America.

Since 2000, in México, shrimp producers from the Northwest of the country have been affected by WSSV. Sinaloa and Nayarit states for example, were reflected their
losses by the reduction of exportations from 30.1 million USD in 2000 compared to the 44.8 million USD in 1999, the losses amount were approximately 14.7 million USD just in one production year, thus producers after this year have been taking actions to control the WSSV disease to reduce their impact [10].

Today the virus continues affecting the production causing the closure of many businesses and affecting the capital of many investors. It is reported by example that in the first half of 2009, the virus has caused mortalities of 70-80 per cent in affected farms in Sinaloa and in Sonora the virus was dispersed in 2008 to areas of the state that had remained free of the pathogen (Personal communication with the Aquatic Health Committees of Sinaloa and Sonora).

WSSV infections have been detected in various tissues and organs, hemolymph, gills, stomach and body cuticular epithelium, hematopoietic tissues, lymphoid organ, antennal glands, connective tissues, muscle tissues, hepatopancreas, heart, midgut, hindgut, nervous tissues, compound eyes, eye, testes and ovaries of naturally and experimentally infected shrimp [11]. WSSV can spread and infect shrimps of any stage of grow-out, asymptotically affecting all life cycle stages, from eggs to broodstock. Once the clinical signs are developed, mortality can reach 100% in 3 days. The causative agent of the disease is an ovoid or ellipsoid to bacilliform in shape double-stranded DNA virus (120-150 nm in diameter and 270-290 nm in length), which genus is Whispovirus, within the family Nimaviridae [12][13].

There is no efficient approach to control this disease, however the WSSV early detection can prevent the shrimp’s mortality by application of different strategies, one of them may be the RNA genetic technique and it can be constituted as a new therapeutic strategy to control the WSSV infection [15]. Thus, the need for rapid, sensitive diagnostic methods led to develop new alternative techniques in different fields of knowledge like computing optic disciplines that can be of support to conventional methods.

Several optic and computational techniques were developed to recognize these kinds of biological patterns, the analysis of inclusion bodies is determinant of the virus presence, e.g., the color correlation approach used to analyze and recognize the presence of IHHNV inclusion bodies by histological samples from 35 mm transparencies digitalized with a flatbed scanner [16].

The aim of this paper is to extent the development of a new technique to classify the WSSV basophilic and Cowdry type A inclusion bodies, acquired from histological digitalized images from infected shrimps samples by the analysis applied over WSSV sample’s slides, based in the application of Fourier spectral filtering techniques, such as K-Law nonlinear filter technique [1].

Figure 1. Arrows show samples of connective tissue cells presenting the WSSV infection.

There is no efficient approach to control this disease, however the WSSV early detection can prevent the shrimp’s mortality by application of different strategies, one of them may be the RNA genetic technique and it can be constituted as a new therapeutic strategy to control the WSSV infection [15]. Thus, the need for rapid, sensitive diagnostic methods led to develop new alternative techniques in different fields of knowledge like computing optic disciplines that can be of support to conventional methods.

Several optic and computational techniques were developed to recognize these kinds of biological patterns, the analysis of inclusion bodies is determinant of the virus presence, e.g., the color correlation approach used to analyze and recognize the presence of IHHNV inclusion bodies by histological samples from 35 mm transparencies digitalized with a flatbed scanner [16].

The aim of this paper is to extent the development of a new technique to classify the WSSV basophilic and Cowdry type A inclusion bodies, acquired from histological digitalized images from infected shrimps samples by the analysis applied over WSSV sample’s slides, based in the application of Fourier spectral filtering techniques, such as K-Law nonlinear filter technique [1].

Figure 2. Typical infected shrimp's cells with WSSV basophilic and Cowdry A type inclusion bodies.
These Fourier spectral and color correlation techniques have been demonstrated to analyze important characteristics of viruses and pathogens [16][17][18], including applications in several fields [19][20][21][22].

Therefore, section II describes the core basis of the methodology and the equipment used to obtain the images from infected shrimp tissues; section III presents the results obtained with the spectral signature index developed; additionally the statistical analytic values obtained from this index and the experiments carried out from the digitalized images previously acquired are included; finally in section IV the possible future work that needs to be done to enrich this research is discussed.

II. MATERIALS AND METHODS

Development of a new technique to analyze and classify WSSV inclusion bodies is divided in five subsections; subsection A describes how the shrimp samples were prepared; subsection B describes the equipment used for image capturing; subsection C describes how had been determined the best spatial color channel function from the multispectral images where the WSSV texture measurement and tissue analysis are carry out by this technique; subsection D explains the mathematical basis used for this technique; finally subsection E describes the steps involved in the obtaining of the classification by the signature index proposed.

A. Virus sample preparation

Experimental shrimps were obtained from a farm located in the state of Sinaloa, México; transported live to the laboratory to be fixed in Davidson’s solution; after 24 h, the fixative was discarded and shrimps were preserved in 50% alcohol solution until they were ready to be processed by conventional histology techniques [2][3][5][13] to obtain the final shrimp tissue histological sample slides, as shown in Figure 3, afterwards they were ready to be examined under microscope.

Several types of WSSV inclusion bodies were selected from cuticular epithelium, connective tissue and abdomen tissue and were digitalized to obtain a filter bank.

B. Digitalized images capture

The WSSV sample slide images were acquired by a novel computational image capture prototype system to enhance the digitalized images with novel autofocus and fusion techniques developed [23][24], running inside a 2.5 GHz PC Pentium 4 with 1 GByte RAM and 80 GBytes HD attached to Leica microscope (model DMRXA2) equipped with a RGB color digital camera (Leica model DC300), as shown in Figure 4.

A set of 168 microscope images were acquired from the shrimp’s tissues by 60x objective with a 2088 x 1550 pixels color resolution digital camera; each representative field can contains about an average of 30 to 60 approximately inclusion bodies depending of the level of WSSV infection. Afterwards, a set of 870 WSSV inclusion body images were selected to build a filter bank with 100 most representative WSSV images obtaining the intensity spatial domain matrix data of each WSSV image to be analyzed; thus multispectral function $f^w(x,y)$ is defined for every pixel coordinates x and y on digitalized images, where $\lambda = \{\lambda_g, \lambda_r, \lambda_b\}$ acquired by a CCD’s digital camera with range $[0, 255]$ and red (R), green (G) and blue (B) are channels in RGB color space representation.

C. Multispectral analysis for the best spatial function channel determination

Let us introduce some useful definitions and functions: $f^1, f^2, f^3, ..., f^w$ are a multispectral filter bank of W captured images of size $N \times P$ pixels from inclusion body samples taken; $f^w(x,y)$ is the captured image matrix with pixels (x,y) in the w^{th} inside filter bank images, where $x = 1, ..., P, \ y = 1, ..., N$ and $w = 1, ..., W$.

Each inclusion body sample image $f^w(x,y)$ digitalized can be decomposed by their corresponding RGB
\(\lambda = \{ \lambda_R, \lambda_G, \lambda_B \} \) channels; thus the three intensity matrix data are \(f_w^{\lambda_R}(x, y), f_w^{\lambda_G}(x, y) \) and \(f_w^{\lambda_B}(x, y) \) respectively.

Let \(\hat{\mathbf{H}} \) be a vector of real numbers \(\mathbb{R} \), where \(\hat{\mathbf{H}} \in \mathbb{R} \) with \(T \) elements, whose elements are sorted in ascending order with respect to their values, the maximum function \(\text{MAX}(\hat{\mathbf{H}}) \) and the integer function \(\lfloor \eta \rfloor \) of a number can be expressed respectively, like

\[
\text{MAX}(\hat{\mathbf{H}}) = \left\{ h_1 \leq h_{i+1}, h_i \in \hat{\mathbf{H}}, i = 1,2, \ldots, (T-1) \right\}
\]

\[
\lfloor \eta \rfloor = \left\{ \delta \mid \delta \in \mathbb{Z}, \eta \in \mathbb{R}, \delta \leq \eta \leq \delta + 1 \right\}
\]

where \(\mathbb{Z} \) represent the set of whole numbers.

Every intensity matrix channel of each inclusion body from the filter bank are analyzed by taking a intensity profile vector set \(\{ \tilde{z}_w \}_{w=1}^{Q} \) where \(q = 1, \ldots, Q \) vectors and \(\{ \tilde{z}_w \}_{w=1}^{Q} \in f_w^{\lambda}(x, y) \), thus \(\{ \tilde{z}_w \}_{w=1}^{Q} \) can be defined by

\[
\{ \tilde{z}_w \}_{w=1}^{Q} = f_w^{\lambda}(x, \xi_{Vt}), \quad \text{for } Vt = -\left[\frac{Q}{2}, \ldots, \frac{Q}{2} \right]
\]

where \(Vt \in \mathbb{Z} \), \(\xi_{Vt} = \left[\frac{x}{P} \right] + Vt \) and \(x = 1, \ldots, P \).

Let \(\tilde{\Psi}^\lambda \) be a vector of mean values of intensity profile vector set, on each channel, where \(\tilde{\Psi}^\lambda \in \mathbb{R} \), using (3) these mean values can be calculated as

\[
\tilde{\Psi}^\lambda_w = \frac{\sum_{q=1}^{Q} \{ \tilde{z}_w \}_{w=1}^{Q}}{Q}.
\]

Figure 5 shows the intensity profile vector set \(\{ \tilde{z}_w \}_{w=1}^{Q} \) graphics calculated from each WSSV channel using (3), afterwards, using (4) can be obtained the pattern measurement of every WSSV channel, \(\tilde{\Psi}^{\lambda_R}, \tilde{\Psi}^{\lambda_G} \) and \(\tilde{\Psi}^{\lambda_B} \) respectively. Calculating the maximum value \(MV^\lambda_w \) of the mean values vectors \(\tilde{\Psi}^\lambda \) can be obtained the best spatial matrix data from where the WSSV inclusion body pattern is analyzed, \(MV^\lambda_w \) can be obtained by the following expression

\[
MV^\lambda_w = \text{MAX} \left\{ \tilde{\Psi}^{\lambda_R}_w, \tilde{\Psi}^{\lambda_G}_w, \tilde{\Psi}^{\lambda_B}_w \right\} \quad \text{for } w = 1, \ldots, W,
\]

therefore the channel source from \(MV^\lambda_w \) has a maximum value indicates the best matrix data, as shown in Figure 6.

D. WSSV spectral signature index classifier

The spectral signature \(SSF \) can be defined like a function to obtain the spectral properties of \(f_w^{\lambda}(x, y) \) from a specific RGB channels \(\{ \lambda_R, \lambda_G, \lambda_B \} \); whereas the spectral signature index \(i^w \) was developed to get a quantitative measurement of the inclusion bodies complexity pattern.

Let \(i^w \) be defined like scalar number valued \(i^w \in \mathbb{R} \) to measure the spectral frequency properties found in \(f_w^{\lambda}(x, y) \) obtained by \(SSF \) function, let \(f_w^{\lambda}(x, y) \) be the intensity matrix data obtained by \(f_w^{\lambda}(x, y) \) green channel, where WSSV inclusion bodies characteristics are protruded.

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org
Let function $I_{\text{Contour}}^{\text{WSSV}}(x,y) \in [0,1]$ be the WSSV inclusion body contour of the function $I^{\text{WSSV}}(x,y)$ calculated by the application of active contour technique (also known as a “snake”) as follows

$$I_{\text{Contour}}^{\text{WSSV}}(x,y) = -G_\sigma(x,y) \ast \nabla^2 I^{\text{WSSV}}(x,y),$$

(6)

where ∇^2 is the Laplacian operator, $G_\sigma(x,y)$ is a Gaussian standard deviation σ, afterwards the edge is obtained by the zero-crossings of $G_\sigma(x,y) \ast \nabla^2 I^{\text{WSSV}}(x,y)$ in the Marr-Hildreth theory [25].

Morphological reconstruction has a broad spectrum of several functions, e.g., like those to filling holes, defining the WSSV inclusion body function $I^{\text{WSSV}}(x,y)$, it can be obtained by filling the area of WSSV inclusion body contour calculated by (6), let $B_m = \{(x,y)\}$ be the pixel coordinates set delimited by the area of the function $I_{\text{Contour}}^{\text{WSSV}}(x,y)$, then the pixel coordinates set can be obtained by $B_m = \{(x,y)\} \text{ inside } I_{\text{Contour}}^{\text{WSSV}}(x,y) = 1$, afterwards the general segmentation function $I_{\text{Seg}}^{\text{WSSV}}(x,y)$ can be defined as follows

$$I_{\text{Seg}}^{\text{WSSV}}(x,y) = \begin{cases} 1 & \{y(x,y)\phi(x,y) \in \gamma_m\} \\ 0 & \text{otherwise} \end{cases},$$

(7)

where $I_{\text{Seg}}^{\text{WSSV}}(x,y) = I_{\text{Seg}}^{\text{WSSV}}(x,y)$, $\phi(x,y) = I_{\text{Contour}}^{\text{WSSV}}(x,y)$ and $\gamma_m = B_m$.

The minimum radius R_{Min} of the circular binary mask where the WSSV inclusion body pattern will be analyzed centered on (x_c,y_c), can be obtained defining the function $R(\theta)$ used to calculate the magnitude of a vector beginning in coordinates (x_c,y_c) until reach the edge of $I_{\text{Seg}}^{\text{WSSV}}(x,y)$ in θ direction as follows

$$R(\theta) = \begin{cases} r & r = r \times \cos(\theta), y = r \times \sin(\theta) \\ r + 1 & \text{if } I_{\text{Seg}}^{\text{WSSV}}(x + x*, y + y*) = 0 \end{cases},$$

(10)

Afterwards doing $r_1 = R(\theta)$ and $r_2 = R(\theta + \Delta\theta)$ where a counterclockwise angle increment is $\Delta\theta$, thus the minimum radius R_{Min} can be defined by

$$R_{\text{Min}} = \begin{cases} r_1 & \text{if } r_1 \leq r_2 \\ r_2 & \text{otherwise} \end{cases},$$

(11)

then using (10) and (11) for $\theta = 0,\ldots,2\pi - \Delta\theta$ is obtained R_{Min}. Let the function $\text{Circ}(R_{\text{Min}})$ be the circle created by the rotation of R_{Min}, then the $I_{\text{Mask}}^{\text{WSSV}}(x,y)$ circular binary mask function using (7) is obtained by $I_{\text{Mask}}^{\text{WSSV}}(x,y) = I_{\text{Seg}}^{\text{WSSV}}(x,y)$ doing $\phi(x,y) = \text{Circ}(R_{\text{Min}})$ and $\gamma_m = \{(x,y)\text{ inside } \text{Circ}(R_{\text{Min}}) = 1\}$, as shown in Figure 7.
Let the function $I_{IB}^b(x,y)$ be the intensity matrix data resulted after the application of the $I_{Mask}^b(x,y)$ circular binary mask function over the area where inclusion bodies are analyzed; thus $I_{IB}^b(x,y) = I_{IB}^b(x,y) \triangle I_{Mask}^b(x,y)$, where \triangle represents the bitwise multiplication.

Let us A_{Mask} be defined such as the circular binary mask's total area over the region of interest analyzed of the inclusion bodies, defined by

$$A_{Mask} = \sum_{x,y} I_{Mask}^b(x,y), \text{ for } I_{Mask}^b(x,y) > 0.$$ \hspace{1cm} (12)

K-Law nonlinear filter function (K-Law) in pattern recognition is used to analyze and explore the discriminating property quality of each filter [26] over the WSSV inclusion body segmented image $I_{IB}^b(x,y)$ function.

K-Law filter function is derived by the Fourier transform of the $I_{IB}^b(x,y)$ function, denoted by

$$I_{IB}^b(u,v) = \left| I_{IB}^b(u,v) \right|^k \exp[-i\phi(u,v)], \hspace{0.5cm} k = 1.$$ \hspace{1cm} (13)

The K-Law nonlinear filter of $I_{IB}^b(x,y)$ is applied by the change of value $0 \leq k < 1$ in (13), where k is the nonlinear strength; thus intermediate values of k permit the variability of filter features [27].

Let $f_{w}^{\circ}(u,v)$ function be defined by the application of K-Law Fourier related filter, calculated over the $I_{IB}^b(x,y)$ function, denoted by

$$f_{w}^{\circ}(u,v) = \left[I_{IB}^b(u,v) \right]^k \exp[-i\phi(u,v)], \hspace{0.5cm} k = 1.$$ \hspace{1cm} (14)

where $k = 0.1$ is used in (13) and u,v are variables in frequency domain.

The SSF function can be obtained by

$$SSF(f_{w}^{\circ}(u,v)) = \begin{cases} 1, & \text{if } \Re(f_{w}^{\circ}(u,v)) > 0, \\ 0, & \text{otherwise} \end{cases}.$$ \hspace{1cm} (15)

where $f_{w}^{\circ}(u,v)$ is obtained by (14).

Finally, the spectral signature index i^w is developed and can be defined by

$$i^w = \frac{SSF(f_{w}^{\circ}(u,v))}{A_{Mask}(u,v) \in \mathbb{C}},$$ \hspace{1cm} (16)

where SSF and A_{Mask} are obtained respectively according by (15) and (12) for every image $f_{w}^{\circ}(x,y)$ found in the inclusion bodies filter bank.

E. Spectral signature index classifier block diagram

Figure 8 shows the block diagram of the new spectral technique involved in WSSV inclusion bodies classification by measurement of the spectral signature index i^w over the infected shrimp's tissue patterns.

![Figure 8](image_url)
This methodology is explained by the following steps:
1) The \(f^s_w(x,y) \) function is acquired from WSSV inclusion bodies color image sample filter bank; 2) This \(f^s_w(x,y) \) is divided into its RGB \(I^s_w(x,y) \), \(I^{wG}(x,y) \) and \(I^{wB}(x,y) \) functions; 3) Segmentation of \(I^{wG}(x,y) \) by using contour “snake” techniques and a morphological operator to get the function \(I_{\text{Contour}}^{wG}(x,y) \); 4) Filling the function \(I_{\text{Contour}}^{wG}(x,y) \) is obtained the function \(I_{\text{WSSV-Seg}}^{wG}(x,y) \), afterwards is calculated the centroid coordinates \((x_c,y_c) \) on this function; 5) From centroid coordinates \((x_c,y_c) \) towards the edge of function \(I_{\text{WSSV-Seg}}^{wG}(x,y) \) is obtained the minimum radius \(R_{\text{Min}} \); 6) By rotating \(R_{\text{Min}} \) centered on \((x_c,y_c) \) is obtained the function \(\text{Circ}(R_{\text{Min}}) \) used to build the final circular mask; 7) A circular mask function \(I_{\text{Mask}}^{wG}(x,y) \) is created inside \(I_{\text{WSSV-Seg}}^{wG}(x,y) \) by filling the area of the function \(\text{Circ}(R_{\text{Min}}) \), where WSSV inclusion body pattern is analyzed, at same time the area \(A_{\text{Mask}} \) is calculated from the \(I_{\text{Mask}}^{wG}(x,y) \) binary mask function; 8) Using \(I_{\text{Mask}}^{wG}(x,y) \) function, segmentation operation is applied over the WSSV inclusion body area \(I^{wG}(x,y) \), where is obtained the \(I_{\text{IB}}^{wG}(x,y) \) function; 9) K-Law nonlinear operation is applied in \(I_{\text{IB}}^{wG}(x,y) \) function to get the \(I_{\text{K-Law}}^{wG}(u,v) \) function then it becomes into \(f^w_{(u,v)} \) function in frequency domain; 10) The frequencies are extracted and analyzed from \(f^w_{(u,v)} \) by the function SSF and 11) the K-Law spectral signature index \(I^w \) is calculated using (16).

III. Results

In order to see if this technique is working with a good performance with the groups of representative inclusion bodies of WSSV with different morphological images, they were analyzed with spectral signature index; their images and an additional group of non-infected tissue particles are shown in Figure 9; hence in Table 1 the statistical behavior values of the spectral signature index are shown, including the mean value \(\pm 2\text{SE} \) (two standard errors).

A set of 168 microscope image field samples were acquired without any additional preprocessing like illumination or contrast correction just the fusion technique developed by [24]; then from this set 870 WSSV inclusion body images were cut, selecting 100 most representative WSSV inclusion bodies to build a filter bank, afterwards every WSSV inclusion body pattern were analyzed to get their frequency measurement and addition to build the biogenic particle cluster by this spectral index.

The great difference in the statistical values of the infected particles with the non infected particles is due to the behavior of WSSV inclusion bodies frequencies in the green channel complex plane, while the non-infected cells do not show similar frequency properties, the infected particles show a well determined frequency signature; in Figure 10 are presented some examples of these frequencies behavior. All the WSSV inclusion bodies were analyzed together; the results shows that the complete inclusion bodies group can be located in well defined fringe \(1.3853 \leq I^w \leq 2.1143 \) with \((\pm 2\text{SE}) \).

Table 1. Spectral Signature Index Statistical Values

<table>
<thead>
<tr>
<th>WSSV Group</th>
<th>(X_{1^{\text{m}}})</th>
<th>(\sigma_{1^{\text{m}}})</th>
<th>1SE</th>
<th>2SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1.3748</td>
<td>0.4817</td>
<td>0.0852</td>
<td>0.1703</td>
</tr>
<tr>
<td>II</td>
<td>2.6069</td>
<td>1.8533</td>
<td>0.4953</td>
<td>0.9906</td>
</tr>
<tr>
<td>III\text{a}</td>
<td>159.4229</td>
<td>352.5394</td>
<td>94.2201</td>
<td>188.4402</td>
</tr>
<tr>
<td>IV\text{b}</td>
<td>1.7498</td>
<td>1.2362</td>
<td>0.1823</td>
<td>0.3645</td>
</tr>
</tbody>
</table>

a. Non-infected tissue group particles;
b. Groups I and II analyzed together.

Figure 9. (a) WSSV strong basophilic inclusion bodies, group I; (b) WSSV white halo and chromatin Cowdry type A inclusion bodies, group II; (c) Non-infected tissue particles, group III.

Figure 10. (a) SSF frequencies of group I; (b) SSF frequencies of group II; (c) Non-infected particles SSF frequencies, group III.
IV. CONCLUSION AND FUTURE WORK

This paper presents a new technique to classify WSSV inclusion bodies from infected shrimp tissue image, based on the analysis of frequencies found in the green channel with K-Law non-linear filter. Representative groups of WSSV inclusion bodies from infected shrimp tissues and organs were analyzed. The results show that inclusion bodies are well defined in a clear numerical fringe; thus it can be inferred that whatever analyzed particle with a spectral signature index i_s value outside of $1.3853 \leq i_s \leq 2.1143$ range can be considered as non-infected particle. Future work can be done in the development of automatic WSSV identification system applying this spectral index classifier; however this kind of classifier can be extended by combining complementary frequency analysis techniques by Fourier related filters on the calculation of the spectral signature index to obtain better discriminating results. Experiments with new tissue samples can be done from other shrimps organs where the virus has a different pattern and its identification is more complex. Finally, the potential of this signature index can be used to classify other kind of shrimp’s viruses and/or other animal, human viruses or biogenic particles.

ACKNOWLEDGMENT

This document is based on work partially supported by CONACYT under Grant No. 102007.

REFERENCES

