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ABSTRACT

Solutions of barotropic coastal-trapped waves in the shallow-water context are discussed for different

shapes of the bottom topography. In particular, an infinite family of topographic waves over continental

shelves characterized by a shape parameter is considered. The fluid depth is proportional to xs, where x is the

offshore coordinate and s is a real, positive number. The model assumes the rigid-lid approximation and

a semi-infinite domain 0 # x # ‘. The wave structure and the dispersion relation depend explicitly on the

shape parameter s. Essentially, waves over steeper shelves possess higher frequencies and phase speeds. In

addition, the wave frequency is independent of the alongshore wavenumber k, implying a zero group velocity

component along the coast. The advantages and limitations of this formulation, as well as some comparisons

with other models, are discussed in light of numerical simulations for waves over arbitrary topography within

a finite domain. The numerical calculations show that the frequency of the waves present a nondispersive

regime at small wavenumbers (observed by several authors), followed by a constant value predicted by the

analytical solutions for larger k. It is concluded that these frequencies can be considered as an upper limit

reached by barotropic coastal-trapped waves over the infinite family of xs-bottom profiles, regardless of the

horizontal and vertical scales of the system. The modification of the dispersion curves in a stratified ocean is

briefly discussed.

1. Introduction

This paper examines the properties of subinertial

coastal-trapped waves in the ocean according to simple

barotropic models. In the absence of stratification, these

oscillations are mainly affected by both the earth’s rota-

tion and the shape of the bottom topography. Subinertial

topographic waves are also referred to as continental

shelf waves, and they travel along the coast with shal-

low water to the right (left) in the Northern (Southern)

Hemisphere. In this sense, the oscillatory motions are

trapped or attached to the coast. The existence of these

waves is associated with conservation of potential vor-

ticity, and therefore they are sometimes referred to as

vorticity waves. In contrast, superinertial oscillations, also

called edge waves, are basically gravity waves affected

by rotation and topography, which travel in any direction

along the coast. Topographic waves have been thoroughly

studied in the last 60 yr from the theoretical, observa-

tional, numerical, and experimental points of view by

a large number of researchers. Important reviews are

those by Mysak (1980) and Brink (1991).

Besides the barotropic limit and subinertial frequen-

cies, we focus our attention to free waves (with no ex-

ternal forcing) propagating along a straight boundary.

The fluid depth over the coastal topography is assumed

as a monotonic function h(x), where x is the offshore

coordinate. In general, wave characteristics vary over

different bottom topographies. Therefore, there are no

universal solutions or general dispersion relations for

coastal-trapped waves (Huthnance 1975), because they

depend directly on the shape of the shelf. Thus, the

bottom topography is often approximated with a well-

behaved analytical function, which is typically linear

[h(x) ; x; e.g., Reid 1958; Mysak 1968; Cohen et al.

2010] or exponential [h(x) ; ex; e.g., Buchwald and

Adams 1968; Gill and Schumann 1974; Gill 1982], from

which the wave properties are derived.

In this paper, we present and discuss a set of wave

solutions of the linear shallow-water equations, which

depend on the shape of the bottom topography profile.
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Such a profile is assumed as h(x) ; xs, where s is an ar-

bitrary positive shape parameter that determines the

monotonically increasing depth of the continental shelf.

The basic procedure and the dynamical fields of the

waves were reported in a preliminary study by Zavala

Sansón (2010a). The aim here is to point out that the

solutions, particularly the wave frequencies, explicitly

depend on s. This result provides an easy procedure to

estimate the frequency of topographic waves over an

infinite family of bottom topography profiles, defined by

the shape parameter.

The limitations of this and other formulations are

discussed. For instance, the analytical dispersion re-

lation indicates that there is no dependence of the wave

frequency on the alongshore wavenumber k, which im-

plies a zero group velocity component along the coast. In

contrast, some other formulations (e.g., Cohen et al.

2010; Buchwald and Adams 1968) are characterized by

dispersion curves with a maximum frequency at a cer-

tain k and hence an energy transport along the coast in

both directions. Other cases present a zero group ve-

locity for large k (e.g., Reid 1958; Mysak 1968). The

approximate superinertial solutions of Mysak (1968)

also present a nearly zero group velocity along the coast

at intermediate frequencies and wavenumbers; recently,

Ke and Yankovsky (2010) discussed this property for

semidiurnal oscillations propagating over wide, gently

sloping shelves. We emphasize, however, that the pres-

ent results are restricted to subinertial waves.

Because the present solutions are obtained for a semi-

infinite domain 0 # x # ‘ and assume the rigid-lid

approximation, we compare the analytical dispersion

relation with the corresponding curves calculated by

means of the numerical scheme developed by Brink

and Chapman (1987) for a finite domain. The simulations

allow an independent evaluation of the main assumptions

and results of the analytical derivation. In general, it is

concluded that the predicted frequencies can be regarded

as an upper limit reached by barotropic coastal-trapped

waves over the infinite family of bottom profiles defined

by the parameter s.

The use of a bottom profile with a shape parameter is

justified by considering some realistic bottom configu-

rations, as shown in Fig. 1. Four examples of continental

topographies at the eastern Pacific Ocean are presented:

two at the Northern Hemisphere, Acapulco (Mexico)

and Lincoln City (United States), and two at the Southern

Hemisphere, Lima (Peru) and Valparaiso (Chile). At

these locations the bottom topography is relatively uni-

form for several kilometers along the coast. Thus, the

profiles are plotted for a transect perpendicular to the

coast. The bottom topography profile h(x) 5 h0(lx)s is

also plotted (dashed lines), where l21 is the horizontal

length scale of the shelf and h0 is a depth scale. The shape

parameter s is indicated below the curves. Evidently, the

bottom profiles are characterized by different values of s.

It seems reasonable, therefore, to look for wave solutions

beyond the linear or exponential profiles.

Another aim of this study is to call the attention to the

relatively simple procedure to derive the solutions. A

relevant result is that the offshore structure of the waves

is obtained in terms of associated Laguerre polynomials.

The linear cases studied by Reid (1958) and Mysak

(1968) actually depend on simple Laguerre polynomials.

This strongly suggests that the analytical method might

be applied in problems with different topographic ge-

ometries. In fact, a similar family of solutions was re-

ported recently for barotropic waves trapped around

seamounts (Zavala Sansón 2010b).

In section 2, we discuss the family of coastal-trapped

waves over the h(x) ; xs depth profile. In section 3, we

make some comparisons between the obtained ana-

lytical frequencies and those calculated by means of

numerical simulations. Section 4 briefly addresses the

influence of stratification on the dispersion curves. Fi-

nally, section 5 includes the discussion and general

conclusions.

2. Wave solutions

Consider a semi-infinite Cartesian domain (x, y) in a

rotating system where 0 # x # ‘ and 2‘ # y # ‘. The

homogeneous fluid layer is bounded by a straight coast

at x 5 0. The linear shallow-water equations are

ut 2 f y 5 2ghx, (1)

yt 1 fu 5 2ghy, and (2)

ht 1 (hu)x 1 (hy)y 5 0, (3)

where subindices denote partial derivatives, u and y

are the velocity components, h is the free-surface de-

formation, h is the fluid layer depth, and g is gravity. In

nondimensional terms, continuity can be written as

dht 1 (hu)x 1 (hy)y 5 0, where d 5 L2/R2
d; here L is a

horizontal length scale and Rd 5 (gH)1/2/f the external

radius of deformation, with H being a depth scale (be-

sides, h ; UfL/g and t ; 1/f). The rigid-lid approxima-

tion considers length scales much shorter than Rd: that

is, d� 1 (e.g., Gill and Schumann 1974). Dropping the

first term in (3), the velocity components can be defined

in terms of a transport function as

u 5
1

h
cy, y 5 2

1

h
cx. (4)
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Using (1) and (2), the equation for the z component of

the relative vorticity, yx 2 uy, is easily derived,

(yx 2 uy)t 1 f (ux 1 yy) 5 0. (5)

This expression states that changes of relative vorticity

are associated with divergence or convergence of the

flow as fluid columns experience changes of depth. This

is the basic mechanism of topographic waves. Substitut-

ing the derivatives of the velocity components gives an

equation for the transport function,

cxxt 1 cyyt 2
hx

h
cxt 1 f

hx

h
cy 5 0. (6)

Wave solutions are proposed of the form

c(x, y, t) 5 h(x)1/2
f(x)ei(ky1vt), (7)

which yields an equation for f,

fxx 1

"
1

2

hx

h

� �
x

2
1

2

hx

h

� �2

1
hx

h

fk

v
2 k2

#
f 5 0. (8)

The solutions must satisfy

f(x) 5 0 at x 5 0 and (9)

f(x) / 0 as x / ‘. (10)

As outlined in the first section, we consider the depth

profile as an arbitrary power of x,

h(x) 5 h0(lx)s 0
hx

h
5

s

x
, (11)

where the arbitrary parameter s . 0 measures the shape

of the shelf and h0 and l21 are the vertical and horizontal

scales, respectively. Evidently, larger s values mean

steeper topographies for x . l21. Figure 2 shows some

examples for different values of this parameter. The

FIG. 1. Profiles of offshore bottom topographies at four locations in the eastern Pacific Ocean. Solid lines are data

from 1-minute gridded elevations/bathymetry for the world (ETOPO1; Amante and Eakins 2009). Dashed lines are

profile h 5 h0(lx)s. The topographic parameters are (a) h0 5 294 m and l21 5 50 km; (b) h0 5 1995 m and l21 5

35 km; (c) h0 5 1248 m and l21 5 86 km; and (d) h0 5 835 m and l21 5 48 km. The depth scale h0 is calculated as the

average depth along the transect and the horizontal scale l21 is such that h(l21) 5 h0.
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advantage of this formulation is to find the wave prop-

erties as a function of the topography shape. Substituting

(11) in (8), the following expression is obtained:

fxx 1

�
2

s

2
1

s2

4

� �
1

x2
1

fks

v

1

x
2 k2

�
f 5 0. (12)

Applying the change of variable,

r 5 2kx, x(r) 5 f(x), (13)

yields

x
rr

1

�
2

s

2
1

s2

4

� �
1

r2
1

fs

2v

1

r
2

1

4

�
x 5 0. (14)

The solution is obtained in terms of the associated

Laguerre polynomials with the following form (see

Arfken 1970, p. 620):

x(r) 5 e2r/2r( j11)/2Lj
p(r), (15)

where the indices j and p are defined by the following

relationships:

j2 2 1

4
5

s

2
1

s2

4
, j . 21 2 R and (16)

2p 1 j 1 1

2
5

sf

2v
p $ 0 2 Z. (17)

The solutions of the first equation are j 5 6(s 1 1). In

general, j . 21 is a real number and therefore there can

only be solutions for arbitrary s . 0 for the positive root

j 5 s 1 1. Index p $ 0 is an integer. The dispersion

relation is derived from expression (17),

v

f
5

s

2(p 1 1) 1 s
. (18)

Note that all waves are subinertial over a shelf with ar-

bitrary s and the highest frequency corresponds to the

wave with p 5 0.

To find the complete solutions, we note first that

f(x) 5 Ae2kx(2kx)(s12)/2Ls11
p (2kx), (19)

where A is an arbitrary constant with appropriate units.

With this expression, the conditions (9) and (10) are

satisfied. When substituted in (7), the full solution for

the transport function is

c(x, y, t) 5 c0

l

2k

� �s/2

e2kx(2kx)s11Ls11
p (2kx)ei(ky1vt),

(20)

where c0 5 Ah1/2
0 is the arbitrary amplitude.

The horizontal velocity components are calculated by

means of expression (4) and taking the real parts,

u 5 2U0kxe2kxLs11
p (2kx) sin(ky 1 vt) and (21)

y 5 2U0e2kx[(p 1 s 1 1)Ls
p(2kx)

2 kxLs11
p (2kx)] cos(ky 1 vt), (22)

where the (arbitrary) velocity amplitude is defined as

U0 5 (c0/h0)[(2k)s/211/ls/2]. To obtain y, the x derivative

of the transport function was calculated by using the

following recurrence relation of the associated Laguerre

polynomials (Abramowitz and Stegun 1972):

r[Ls11
p (r)]

r
5 pLs11

p (r) 2 (p 1 k)Ls11
p21(r). (23)

To write the polynomials with indices within the range

of permitted values, an additional recurrence relation

was also used,

Ls11
p21(r) 5 Ls11

p (r) 2 (p 1 s 1 1)Ls
p(r). (24)

The structure of the waves for different values of the

shape parameter s is thoroughly described in Zavala

Sansón (2010a). Essentially, the oscillations are a set of

positive and negative relative vorticity patches arranged

along the coast, traveling in the negative y direction: that

FIG. 2. Depth profiles over continental shelves of the form h 5

h0(lx)s for s 5 0.25, 0.5, 1, 2, and 4. The topographic parameters are

h0 5 1000 m and l21 5 50 km.
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is, with shallow water to the right. The patches have

maxima and minima at the coast, and they rapidly decay

offshore. An important point to notice is that the waves

are trapped within a distance of order k21, (i.e., de-

termined by their own size along the boundary) be-

cause of the factor e2kx. The offshore structure of the

waves is characterized by an oscillatory vorticity and

velocity profile with strongly decreasing amplitude for

large offshore distances (u, y / 0 for x� l21). Index p

indicates the number of zero crossings of the offshore

vorticity profile. Thus, p is a natural measure of the

offshore wavenumber.

3. Wave properties

The dispersion relation depends directly on the shape

parameter s and the offshore mode p, as expression (18)

indicates. Wave frequencies as a function of the shape

parameter for the first five p modes are presented in

Fig. 3a. These curves show that low s values imply lower

frequencies, or waves with higher frequencies are de-

veloped over steeper slopes. Also, the gravest mode p 5 0

possesses the higher frequency over any topography.

The predicted values for linear slopes, s 5 1, calculated

by Reid (1958) are shown with a circle (the linear slope is

further discussed below). On the other hand, the star

over the curve of the gravest mode p 5 0 indicates the

frequency of a wave over a topography proportional

to x1/2. This value was analytically calculated by

Huthnance (1978) as v/f 5 [22 1 (9 1 5Sk)1/2]/5, with S

a stratification parameter; for the barotropic case (S 5

0), the present result is recovered, v/f 5 1/5.

The waves are dispersive with phase speed

c 5 2
v

k
5 2

fs

k(2p 1 s 1 2)
, (25)

so larger waves (smaller k) travel faster. For a given wave

(fixed k), the phase speed as a function of the shape pa-

rameter has the same behavior as the frequency curves,

as shown in Fig. 3b. In other words, waves over steep

shelves travel faster than waves over weaker slopes.

The simple character of the dispersion relation de-

mands a deeper investigation on the restrictions imposed

in the present derivation (e.g., the group velocity ›v/›k is

null). One of those assumptions is the semi-infinite plane

0 # x # ‘, which implies that the depth field increases

indefinitely in the offshore direction. Thus, an important

question is whether the solutions change significantly

when a flat-bottom abyssal ocean is included. To answer

this point, we have performed numerical simulations with

the code written by Brink and Chapman (1987), in order

to find the frequencies associated with barotropic waves

over arbitrary topography. Basically, the numerical

scheme reduces the dependent variables of the linear

shallow-water equations into a two-dimensional eigen-

value problem for pairs (v, k); by fixing a given k, the

code searches for resonant frequencies v by using an

iterative process. The bottom profile h(x) 5 h0(lx)s is

prescribed up to a maximum depth of 2h0 (for the linear

profile such a distance is 2l21). The numerical domain

is extended an additional distance of typically 2l21,

along which the depth field maintains the same value.

Thus, the offshore coordinate is defined as 0 # x # 4l21.

FIG. 3. (a) Wave frequency as a function of the shape parameter for modes p 5 0, . . . , 4, given by expression (18).

The circles indicate the frequency for the linear shelf s 5 1 predicted by Reid (1958). The star indicates the frequency

of the gravest mode over a shelf with s 5 ½ calculated by Huthnance (1978). (b) Corresponding phase speeds (25) for

the modes of a wave with k 5 1/50 km21.
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Using this configuration, several simulations were per-

formed for different topographic parameters (h0, l21,

and s). Some other numerical parameters are described

in the appendix.

Figures 4a–c present the behavior of the dispersion

relations over three linear topographies (s 5 1) with very

different vertical and horizontal scales. Note that the k

axis has dimensions. In all cases, the dispersion relation

presents a linear behavior for very long waves (i.e., they

are nondispersive), until reaching the constant limit

predicted by the present solutions (1/3, 1/5, 1/7, . . .). This

behavior is found for several different combinations of

the topographic parameters. Thus, a first conclusion is

that the solutions do not change significantly in a finite

domain and a flat-bottom abyssal ocean, except for small

k. This is not surprising because the solutions are based

on the rigid-lid approximation, which demands length

waves shorter than the deformation radius. Note that

the frequencies of all modes reach the analytical values

at a smaller k for wider topographies (larger l21). In

other words, the range of waves that reach the analytical

frequencies is larger for wider shelves. There is another

observation: the dispersion relation (18) indicates a set

of specific frequency values for a given parameter s, re-

gardless of h0 and l21. This property is verified by plotting

the dispersion relation in the adequate nondimensional

FIG. 4. Dispersion relation for modes p 5 0, . . . , 4 calculated for linear topographies, s 5 1, and topographic

parameters (a) l21 5 50 km and h0 5 200 m, (b) l21 5 200 km and h0 5 2000 m, and (c) l21 5 500 km and h0 5

2000 m. Solid lines indicate the present model given by (18). Dashed lines indicate the numerically calculated dis-

persion curves. (d) Dispersion relation for the three previous cases, but now as a function of k/l. The numerical

curves (dashed) are indistinguishable.
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units, as shown in Fig. 4d. Here, the curves of Figs. 4a–c

are plotted together in terms of k/l. Evidently, the fre-

quencies associated to each mode are indistinguishable.

We can now analyze numerically some cases for dif-

ferent shape parameters. Figure 5 presents the disper-

sion curves of the two first modes (p 5 0 and 1) over

bottom profiles with s 5 ½, 1, 2, and 3. Recall that higher

s values imply higher frequencies. The simulations in-

dicate that the predicted frequencies for both modes

are reached at smaller k for smaller s. For instance, for

s 5 ½ the wave mode p 5 0 reaches the predicted value,
1/5, for wavelengths shorter than the width of the shelf

(k21 , l21). In contrast, for s 5 3 only those waves with

4k21 , l21 present the predicted value, 3/5. A similar

situation occurs for mode p 5 1. The simulations were

performed with h0 5 200 m and l21 5 50 km. However,

recall that the form of the v/f versus k/l curves is in-

dependent of these values.

4. Some effects of stratification

We have seen that the theoretical frequencies obtained

for the rigid-lid waves with the dispersion relation [(18)]

are an upper limit for barotropic waves over an arbitrary

bottom profile xs (for x bounded or unbounded). Because

stratification is of fundamental importance in the ocean,

it is useful to explore the modification of the dispersion

curves in the presence of this additional effect. Here, we

discuss the dispersion relation in a stratified fluid ob-

tained by means of the numerical solver for baroclinic

waves written by Brink and Chapman (1987). We shall

limit the discussion only to a few cases with uniform

stratification. It is anticipated that the frequency of the

waves is increased in a stratified ocean, as has been shown

in other studies (e.g., Brink 1982; Huthnance 1978). We

analyze two bottom topographies with s 5 1 and 2. The

numerical domain and parameters are equivalent to

those used for the barotropic case (see the appendix),

except that now we prescribed a uniform Brunt–Väisälä

frequency N2 over the whole fluid depth.

Figure 6a shows the dispersion relations for the zeroth

mode (p 5 0) over a linear topography (s 5 1) for four

different values of N2, ranging from 1026 s22 (typical of

the abyssal ocean) to 1024 s22 (typical of the pycnocline

at the upper ocean). The analytical value, 1/3, is repre-

sented by the horizontal line. It can be observed that the

nondispersive regime for small k is very similar in all

cases. As the frequencies approach the barotropic limit,

the curves bend almost horizontally. The waves with

weak and moderate stratification (two lowest curves)

are very close each other and remain relatively close

to the barotropic frequency (maximum difference of

’1%). Thus, for moderate N2 the dispersion curves are

very similar to the barotropic limit over the linear to-

pography. For larger stratifications, the curves depart

about 24%. Note that there is a weak tendency to decay

for larger k.

Figure 6b shows the corresponding curves of the same

mode over a quadratic profile, s 5 2. The barotropic

limit is ½. Weak stratifications remain very close again

(two lower curves), but now they present a departure

from the horizontal line of about 10% at k/l ’ 2.8.

Strong stratifications (two upper curves) imply strong

deviations from the barotropic limit (more than 40% for

FIG. 5. Dispersion relation for modes (a) p 5 0 and (b) p 5 1, calculated for topographies with shape parameter s 5

0.5, 1, 2, and 3. Solid lines indicate the present model given by (18). Dashed lines indicate the numerically calculated

dispersion curves.
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the highest stratification). The decaying tendency of the

lowest three curves is evident.

5. Discussion

Solutions of barotropic, rigid-lid topographic waves

over a continental shelf with different depth profiles have

been presented. The waves are characterized by sub-

inertial frequencies and by their propagation along the

coast with shallow water to the right (left) in the Northern

(Southern) Hemisphere. The wave solutions are based on

the shape of the bottom profile proportional to xs, where s

is a real, arbitrary positive number. These solutions allow

the description of coastal-trapped waves over an infinite

set of continental shelves defined as powers of the off-

shore coordinate. The waves are trapped in the sense that

they rapidly decay in the offshore direction as e2x. A

remarkable characteristic of the solutions is that the dis-

persion relation is a very simple expression, (18), given in

terms of the shape parameter s and the offshore wave-

number index p (50, 1, 2, 3, . . .). This allows an easy es-

timation of the wave frequencies and phase speeds

depending on the shape of the bottom profile (Fig. 3).

An important assumption is the use of a semi-infinite

domain over which the xs topography is defined. To in-

vestigate the consequences of this approach, we per-

formed numerical simulations with the code of Brink

and Chapman (1987) in order to find the corresponding

wave frequencies in a finite domain. In the simulations,

the bottom profile h 5 h0(lx)s is defined up to x 5 2l21

and beyond that point the bottom becomes flat with

h 5 2h0. The numerical results have showed that the

waves present a nondispersive regime for very long waves

(small k; Mysak 1980), and then reach the frequency

given by (18) for k larger than a few times l (Figs. 4, 5).

This is in agreement with the rigid-lid approximation,

which assumes that the waves have to be shorter than the

deformation radius. Besides, the numerical simulations

showed that the dispersion relations v/f versus k/l are

identical (for a given s), regardless of the depth scale and

the width of the shelf. This was indeed anticipated from

the analytical dispersion relation, which indicates that the

frequency of the different modes does not depend on the

topographic parameters h0 and l but only on the shape

parameter s. Thus, the analytical results obtained for

a semi-infinite domain can be applied for a finite-depth

topography for k/l sufficiently large (depending on s). A

fair conclusion is that the frequencies predicted in the

present solutions can be regarded as the upper limits

reached by barotropic wave modes over the infinite

family of the xs-bottom profiles.

The wave frequencies predicted in (18) can be directly

compared with respect to some other formulations. One

of the earliest studies in topographic waves was reported

by Reid (1958), who examined the case of a linear bot-

tom profile in a semi-infinite domain. The frequencies

showed a nondispersive regime for small k, after which

they rapidly tend to the values given by (18) for s 5 1. An

additional complication arises when considering a shelf

of finite width, as shown by Mysak (1968). In that study,

the wave solutions over the linear shelf were coupled

with an external solution outside, where the depth was

FIG. 6. (a) Numerically calculated dispersion curves (dashed lines) for mode p 5 0 over a linear topography s 5 1, in

the presence of stratification: N2 5 1026, 1025, 5 3 1025, and 1024 s22 for curves in ascending order. The horizontal

line is the barotropic limit 1/3. The topographic parameters are h0 5 200 m and l21 5 50 km. (b) As in (a), but for

a quadratic topography s 5 2. The horizontal line is the barotropic limit ½.
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considered constant (as in our numerical simulations).

As a result, the dispersion curves described by Reid (1958)

are modified for small k (see Fig. 5 in Mysak 1980), but

the frequency limits given by (18) are obtained for large

k again.

The dispersion relation over a linear topography can

present a different behavior by introducing very subtle

variations in the bottom profile. Such is the case of a

linear topography, but now with a nonzero depth at x 5

0. In the formulation of Cohen et al. (2010), the authors

considered a fluid depth of the form h(x) 5 H0 1 H9x,

where H0 is a nonzero depth at the coast and H9 the

slope. The results were oriented to explain observations

in laboratory experiments. The wave modes are given in

terms of the zeros of the Airy function. The dispersion

curves have a maximum frequency for each mode, after

which the frequency slowly diminishes for larger wave-

numbers [see their Eq. (11) and their Fig. 3].

Another well-known depth profile is the exponential

function h(x) 5 H0e2blx, where H0 is the depth at the

coast and b is a real, positive number. This profile was

used by Buchwald and Adams (1968) and by Gill and

Schumann (1974), among others. The exponential to-

pography strongly simplifies the offshore structure of

the waves to harmonic functions: for instance, sin(lx),

where l is the offshore wavenumber. The model of

Buchwald and Adams (1968) considers a finite expo-

nential profile and assumes a flat bottom beyond a given

shelf width. The case of a semi-inifinite plane is presented

in the textbook by Gill (1982, 409–410). The dispersion

curves for the exponential topography are characterized

by a maximum frequency for each mode and a rapid

decay for large k.

Considering the shape of the dispersion relations de-

scribed in last two paragraphs, the independence of the

wave frequency with wavenumber in (18) deserves some

additional comments. The general analysis of Huthnance

(1975) predicts a nondispersive regime for small k and

a decaying frequency for large k, which is verified in the

models of Buchwald and Adams (1968) and Cohen et al.

(2010), among others. As a consequence, waves in these

models transport energy along the coast in both di-

rections, because the alongshore group velocity changes

sign at a maximum frequency. A necessary condition,

however, is that hx/h is bounded for all x. This is not

the case in the present formulation at x 5 0 (hx/h 5 s/x),

so this hypothesis does not hold. As a consequence, the

zero group velocity found here does not contradict

Huthnance’s theorem. A similar situation explains the

zero group velocity for large k in the models of Reid

(1958) and Mysak (1968).

It must be mentioned that the precise shape of the

dispersion curves in most of previous models might be

very sensitive to the topographic parameters: for exam-

ple, the depth at the coast H0. In addition, some of them

consider wave solutions over a finite shelf, coupled with

an external solution outside, where the depth was con-

sidered constant, as mentioned above for the linear and

exponential profiles. This procedure implies the solution

of transcendental equations in order to match the internal

and external solutions, which difficults the application of

the resulting dispersion relations. In contrast, for the xs

profiles the maximum frequencies can be easily estimated

as a function of the shape of the topography given by s,

without assuming necessarily a linear or an exponential

shape. Other topographic parameters do not alter the

dispersion curves. An important limitation is that the

theory cannot be applied for waves longer than the width

of the coastal topography or used to explain energy trans-

port along the coast. Because of these advantages and

disadvantages in all formulations, caution must be taken

when a model is invoked to explain or predict wave fre-

quencies in oceanographic observations, where usually the

errors of the measurements are rather large. Summarizing,

the behavior of topographic waves might strongly differ

depending on the model considered. In other words, as

discussed by Huthnance (1975), there is no universal

dispersion relation for waves over arbitrary topography.

As a final remark, it must be recalled that another im-

portant factor in oceanic conditions is the stratification.

According to the analysis by Huthnance (1978), a uni-

form stratification over a sloping bottom tends to increase

the frequency of the waves (see, e.g., his Fig. 8). Such an

increase slightly surpasses the limit values derived here

for weak stratification over a linear topography, as shown

in the numerical simulations in previous section. The

difference becomes more important over a quadratic

profile, especially for high N2 values. These results pro-

vide a general idea on the effects of uniform stratification.

Nevertheless, additional work is required to discuss more

general cases: that is, nonuniform stratification and the

influence of different topographic parameters.
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APPENDIX

Numerical Parameters

The numerical dispersion relations for barotropic

waves over arbitrary topography were calculated by using

the code BTCSW.FOR of Brink and Chapman (1987).

Equivalent values are used in the code BIGLOAD4.FOR
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for baroclinic waves (for the stratified case the numerical

code demands a nonzero depth at the coast; in all cases

we have used 10 m at x 5 0). Using their notation for

the input files, some relevant numerical parameters are

the following:

The number of grid points in the x direction is NN 5

XMAX/dx, where XMAX 5 4l21 is the distance

(km) from x 5 0 to the offshore boundary of the grid

and dx 5 500 m is the resolution in all cases.

To find the resonant frequencies, up to NITM 5 50

iterations were prescribed, with a fractional accu-

racy EPS 5 0.001 and a fractional step size for the

initial search DEL 5 0.001.

The boundary conditions were prescribed as IDD3 5

2 and IDD4 5 1 (exponentially decaying condition

at x 5 XMAX and zero normal flow at the boundary,

respectively).

The number of pairs (v, k) was fixed at NCALM 5

100 in all simulations. The wavenumbers are de-

fined as k 5 [RLF 1 (n 2 1)DRL] 3 1025 m21,

where n ranges from 1 to NCALM. To find the

resonant modes, the initial k (n 5 1) was chosen by

varying RLF within a range of 0.1–7. The increment

was fixed at DRL 5 1 in all cases.
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