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Ekman decay of a dipolar vortex in a rotating fluid
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The evolution of quasi-two-dimensionéD) dipolar vortices over a flat bottom in a rotating fluid
system is studied numerically, and the main results are experimentally verified. Our aim is to
examine the dipole decay due to bottom friction effects. The numerical simulations are based on the
2D physical model derived by Zavala Sansand van HeijsfJ. Fluid Mech 412, 75(2000], which
contains nonlinear Ekman terms, associated with bottom friction, in the vorticity equation. In
contrast, the conventional 2D model with bottom friction only retains a linear stretching term in the
same equation. It is shown that the dipole trajectory is deflected towards the(ireghtn the
anticyclonic direction when nonlinear Ekman terms are included. This effect is not observed in
simulations based on the conventional model, where the dipole trajectory is a straight line. The basic
reason for this behavior is the slower decay of the anticyclonic part of the dipole, with respect to the
cyclonic one, due to nonlinear Ekman effects. Another important result is the exchange of fluid
between the cyclonic part and the ambient, leaving a tail behind the dipole. By means of laboratory
experiments in a rotating tank, these results are qualitatively verified20@1 American Institute

of Physics. [DOI: 10.1063/1.1335541

I. INTRODUCTION tion of experimental monopolar vortices quite well. The
model contains the linear Ekman condition as the bottom
The emergence of two-dimension@D) structures is @ boundary condition when the continuity equation is verti-
common phenomenon observed in rotating flows with lowcally integrated, but nonlinear Ekman effects are incorpo-
Rossby numbefi.e., where rotation effects are dominant rated in the vorticity evolution equation, in contrast with the
For instance in geophysical fluid dynamics, where theconventional 2D model.
Earth’s rotation plays a crucial role, such structures are fre- | this paper, the evolution of quasi-2D dipolar vortices
quently observed. These features can also be found in 1abgy 3 homogeneous fluid layer over a flat bottom is studied. A
ratory experiments in a rotating fluid tank. Obviously, in gipole consists of two counter-rotating vortices whose mu-
these examples the motion is not purely 2D because of thgg| interactions provide the self-propelling mechanism. In
influence of several factors, e.g., bottom friction, stratifica-particular, our aim is to examine the effect of bottom friction
tion, free-surface effects, etc. The 2D motion, however, i, the evolution of such vortices, by means of numerical
predominant and can appropriately be called “quasi-2D.” g jations based on the extended 2D model of ZS00 and

The quasi-2D flows considered here are those affecte,o conyentional model, together with laboratory experi-
by bottom friction, associated with the no-slip boundary CON-ents in a rotating tank

dition at the solid bottom. For the case of a homogeneous 1. jinear Ekman condition used in the 2D models pre-

guk'd thel mOt'o?th tgettlnten_or dodmaln_, "eil’ O;E)S'?_i thEekth'ndicts that the vertical velocity induced by the Ekman layer in
man fayer at the bottom, 1S predominantly 2L. 1he EKMafy, o 40 ior flow is proportional to the vertical component of

layer induces a weak vertical motion in the interior fl¢tve he relati icity. A h ioi
so-called Ekman suction/blowipgwhich eventually affects the refative vorticity. As a consequence, the pump( w-
ing) of fluid from the Ekman layer to the interior flow in the

its evolution. This is the basic mechanism of bottom friction. . . :
.“conventional model, represented by a linear term in the vor-

The smallness of such effects allows their incorporation ”}icit cquation. produces an exponential decay of cvclonic
2D models. The well-known conventional 2D model with y equation, p P ay Y
(anticyclonig fluid columns. In other words, linear Ekman

bottom friction includes a linear term in the vorticity evolu- fricti d h ffect i | d anti

tion equation, together with lateral viscous effects. In a re- riction proguces he same efiect in cyclones and anticy-
cent study, Zavala Sans@nd van Heijst(henceforth ZS0D clones. In contrast, the nonlinear Ekman terms in the ex-
derived an extended 2D model in the vorticity—stream func—tenOIed model break this symmetry. As a result, bottom fric-

tion formulation including bottom damping effects, which tion has different effects on fluid columns with positive or

were shown to explain the main characteristics of the evoluneg""tive relative vorticity. In particular, cyclones decay

faster than anticyclonés? Therefore it can be expected that
the trajectory of a dipolar vortex, when affected by bottom
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. Y : : iction, will be deflected to the right.e., in an anticyclonic
Carretera Tijuana Ensenada 22800 Ensenada, BRichlePhone(52)(6)- due to the faster d f_§t1|’( lonic half T?/T .
1745050 ext. 24106; fax: (52)(6)-1750568; electronic mail: SeNs@due to the faster decay of its cyclonic half. This is one

Izavala@cicese.mx of the main results shown in this study. Another important
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observation is the “detrainment” of fluid from the dipole to =(0,0{2) is taken anti-parallel to the gravitational accelera-

the ambient. This leaking effect originates mainly from thetion g=(0,0,—g). The evolution equation in the vorticity—

cyclonic half. Both phenomena are consequences of nonlirstream function formulation ighenceforth referred to as

ear bottom friction effects. This notion is stressed by the factnodel M1 as in ZS00

that both features are observed in numerical simulation 1

based on the extended model of ZS00, while they are absenﬁ+3(w,w)_ ~EYWy-Vo

in flow simulations carried out with the conventional 2D 9t 2

model. ] ] ) ] =vV20— EY0(w+1), (2.1
In the present numerical simulations the Chaplygin—

Lamb dipolé is used as an initial flow condition. Such a Wherew=dv/dx—aul/dy is thez component of the relative

dipole is an exact solution of the inviscid Euler equations.vorticity, (u,v) are the velocity components in the,¥)

These well-known dipolar structures have been studied bedirections, respectively,is the time,v is the kinematic vis-

fore by a number of authors. Nielsen and Juul Rasmdsser¢osity, f=2Q is the Coriolis parameterV?=4%/dx?

and van Geffen and van Hefisstudied the evolution of +d°/dy? is the horizontal Laplacian operatakjs the Jaco-

Chaplygin—Lamb vortices under the influence of lateral vis-bian operator, ané is the Ekman number defined by

cous effectqwithout Ekman damping In such a case, dif- 5

fusion of vorticity induces the vortex decay, as well as a g= _V, (2.2

slight radial expansion. On the other hand, Swaters and fH?

Flierl® studied the Ekman dissipation of a barotropic mOdor\NhereH is the fluid depth. The terms proportional E3’2

by using the conventional linear damping term in the VOrtiC-\ hich is much smaller than unity, represent the bottom fric-

ity equation. In that study, Ia'FeraI viscous effects were nOTtion effects. The(nonlineay Ekman terms on the left-hand-
considered. As a result, the dipole decays exponentially anglide of (2.1) are the corrections to the advective terms
its shape is preserved. What above has been called a “cony

tional model” is in fact del including lateral vi (w,¢) due to bottom friction. The Ekman terms on the
ventional modet™1s In fact a modetincluding fateral viscous right-hand-side represent stretching effects associated with
effects together with linear Ekman friction. It is worth men-

tioning that. for the fl . tudied h lateral fricti the Ekman pumping. The stream functigns related to the
.|on|ng al, for the flow regimes s_u .|e .ere, ateraliriction o -tive vorticity through the Poisson equation,
is a weaker effect than Ekman friction, i.e., bottom effects

are more important for the vortex decay than lateral viscos- w=—V?y, (2.3
ity. . -
! Dipolar structures in a rotating system have been studiegnd the horizontal velocities are
experimentally in different situations. For instance, Velasco a1 0y
Fuentes and van Heifsand Velasco Fuentest al® studied U=y~ SE o (2.4
the motion of dipolar vortices on a topograplileplane; Ve-
lasco Fuentésreported the dipole evolution on g-plane; ooy 10y
Carnevaleet al'® examined the problem of a dipole colliding TTx 20 oy 29

with a vertical wall on g3-plane. In contrast to those studies,

in the present paper we examine the dipole evolution durinél\‘Ote that theO(El’Z) correctiqn in.the hprizontal velocities
relatively long periods of timgmore than one Ekman pe- epresents a potential flow, since it vanishes when the curl of

riod), in order to observe the influence of the bottom in thethe ¥$}I00|ty f'eldt_'s tallkzeg. del including bott d .
vortex decay. e conventiona model including bottom damping,

The rest of the paper is organized as follows: In Sec. ”used_ In many previous studigsee, e.g., Pedlpskb, only
the viscous 2D physical models, with and without Ekmanconsmers the linear part of the Ekman stretching terms in the

effects, are presented. Numerical simulations, based on tho¥grticity equation(hereaftermodel M2:

2D models, of dipolar vortices over a flat bottom are pre- e 5 1 .,

sented in Sec. IIl. In Sec. IV, the behavior of a typical ex- 5 TI(@.#) =V o—sET 0. (2.9
perimental dipole is shown, which qualitatively verifies the

most important numerical results. Finally, in Sec. V the re-Under this approximation, the stream function and the vor-
sults are discussed and summarized. The evolution of thécity are related through the Poisson equati@r8), but the
Chaplygin-Lamb dipole, using conventional 2D viscoushorizontal velocities do not include the correctiofE"?) as

models is analytically described in the Appendix. in (2.4) and (2.9
Dropping all the Ekman terms, the purely 2D model

(hereaftermodel M3 is obtained:
Il. VISCOUS 2D MODELS

Jw

Y +J(w,)=vV30. (2.7

In this section, the 2D model incorporating bottom fric-
tion derived by ZS00, together with the conventional formu-
lation used in many other studies, are presented. These motdihis model was used by Nielsen and Juul Rasmdsaad
els apply to a homogeneous fluid layer over a flat horizontalan Geffen and van Heijstfo study the Chaplygin—Lamb
surface, rotating at a constant angular speed. Using convedipole evolution only in the presence of lateral viscous ef-

tional Cartesian coordinates,f/,z), the angular rotatiof2 fects. Some additional simulations based on M3 will be used
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in order to illustrate the effects of Ekman friction obtained TABLE I. Characteristic parameter values for the simulations of the decay-

with M1 and M2. Note that this equation also applies for aing Chaplygin—Lamb dipole over a flat bottom. The calculation of the Ek-
nonrotating systém man periods is based dn=1 s and »=0.01 cnfs™! (the kinematic vis-

. ; . . . cosity of water at 20 °C
Considering only the linear Ekman term, i.e., without

lateral viscous effects, the evolution equation(hgreafter, Simulation Model H (cm) Te (9
model M4 1 M1 [Eq. (2.1)] 16 226
S 1 2 M2 [Eq. (2.6)] 16 226
—+J(w,)=— EYw. (2.9 3 M3 [Eq. (2.7)] 16 226
ot 2 4 M4 [Eq. (2.8)] 16 226
Swaters and Flietistudied the evolution of barotropic mo- : m 284 fig
dons by using an equivalent damping term. Note that model
M2 includes both types of viscous effects as contained in
models M3 and M4,
1. NUMERICAL SIMULATIONS all simulations the vortex was placed at the left side of the

The numerical simulations were performed by means offomain, at &o,Yo)=(25 cm, 50 cm, such that the transla-
a finite differences code, which was originally developed fortion in all the graphs is observed from left to right, along the
purely two-dimensional flowlé'® and later extended to in- X direction.
clude variable topograph$®or bottom friction(ZS00. The The viscous evolution of the Chaplygin—Lamb dipole,
numerical domain is a rectangle bf xL,=150x100 cm  using models M2, M3, and M4 is described in the Appendix.
with periodic boundaries discretized by 12828 grid Assuming that the dipole maintains its functional form, ana-
points; a constant time stefi=0.1 s was used in all simu- lytical expressions for the dipole decay, size, speed, energy,
lations; the Coriolis parameter is taken to be 1;she kine-  and enstrophy can be derived for these models. The same
matic viscosity is 0.01 cAs 1, and the fluid depth is varied procedure does not apply for model M1, where the linear
between 8 and 24 crithese numerical values were chosenw— ¢’ relationship is los{see below.
corresponding to the laboratory arrangement; see Sec. IV Table | lists the numerical simulations performed for this
The duration of the simulations is of ord&g, the Ekman  section. First, the evolution of the dipole is studied by means

time scale, defined as of models M1, M2, M3, and M4 using the same fluid depth
5 o\ 12 (simulations 1, 2, 3, and)4Later, the influence of the depth
E:fEUZ:(ﬁ) H. (3.1) is examined by comparing simulations 1, 5, and 6.

For such times, bottom friction effects became manifesth" Dipole trajectory and decay

Both in the present laboratory experiments and in geophysi-  Figure 1 shows the evolution of the Chaplygin—Lamb
cal flows, the Ekman time scale is usually much longer tharipole calculated with models M1 and M@eft and right
the rotation period of the system. For instance, under typicatolumns, respectivelyand using the same deptsimula-
experimental condition§~10"*, and thereforde~200's,  tions 1 and 2 in Table)! Relative vorticity contours are
while the rotation period of the system ist#f =4 s. shown for three times during a timespan of approximately
In the numerical simulations the flow is initialized by 0.88r. The figure also shows the calculated trajectories of
using the dipolar vortex model discussed by Chaplygin andhe dipole center for both modefthe center is defined as the
Lamb® which is a solution of the inviscid, steady Euler equa-middle point between the peak vorticities of both halves of
tions in a reference frame co-moving with the dipole at aihe dipolg. The main evident feature when using model M1
constant velocityJ. The dipole’s interior is characterized by s that the dipole trajectory is deflected to the right. In con-
a linear relationship between the relative vorticity and theyast, when using the conventional bottom friction formula-
stream function, i.e=k*y’ (with ' the corrected value jon i e.. model M2, the vortex trajectory is a straight line. It
of ¢ in the co-moving reference framewherek is a con- st pe recalled that without any Ekman effect, i.e., only

stant, inside a circular region of radiasthe so-called vortex i1y ding lateral viscous effectsnodel M3, the trajectory is
atmosphere Outside this region the flow is assumed to be o, 4 straight lindS The same result applies when only

irrotational. The relative vorticity distribution in polar coor- linear Ekman effectémodel M4 are considerefl

dinates ¢, 6) is The vortex trajectories are better understood by measur-
Kk ing the positivew™ and negativen~ peak vorticities, which
Ji(kr)sing, for O=<r=a, (3.2  are plotted as a function of time in Fig. 2. Figur@2shows
Jo(ka) the decay of the peak vorticities when using models M1
andw=0 for r>a. HereJ, andJ; are the first and second (solid line) and M2 (dashed ling The corresponding decays
order Bessel functions of the first kind, respectively. In thewhen using models M8dashed—dotted lineand M4 (dotted
present simulations, the vortex atmosphere is chosen to bime) are shown in Fig. @). The evolution of the ratig
a=10 cm, and the initial velocity) =1 cm s . Using these between the peak vorticities of both halves is shown in the
values the initial Rossby number RdJ/fa is O(10 ). In lower row of the same figure. This ratio is defined as

w(r,0)=—
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Model M1 Model M2
t=40s =40 s
100 100
80 (@) 80 (d)
’g‘ 80r ey ClY N
= 40f N E—’ 4 - g
20 20
00 50 100 150 00 50 100 150 FIG. 1. Vorticity contours of a
x (cm) Chaplygin—Lamb dipole in numerical
simulations 1 and 2(see Table ),
=120 s =120 s based on model M1[(a—(c)] and
100 100 model M2[(d)—(f)], respectively. The
dipole evolution is presented at three
80 (b) 80 (e) different times ¢/Tg=0.18, 0.53, and
0.88. The contour intervalAw is 0.1
60 7N 60 SN @ s~ % solid (dashedl lines are positive
« ,\@ 7 o) (negative contours. The initial vortex
40 it ) 40 - parameters arexf,yo)= (25 cm, 50
cm), a=10cm,U=1 cm s%, 0™ (0)
20 20 =—w (0)=1.1 s'¥. The dipole tra-
0 0 jectory is also shown. The initial at-
0 50 100 150 0 50 100 150 mosphere is indicated by the dashed—
dotted circle.
=200 s 1=200 s
100 100
80 () 80 ®
60 !.~-\ 60 /-—-\ -
40 \f"\? af N7 <
20 & 20
0 0
0 50 100 150 0 50 100 150
ot Note from Fig. 1 that the distance covered by the dipole
p= o] (3.3 is not very different when using linegM2) or nonlinear
o

Ekman friction (M1). Figure 3 shows the velocity compo-
nents (4,v4) of the dipole center, and the magnitude of its
When using M1, it is evident that the peak vorticity of the translation velocityu = (u3+v2)"2 as a function of time for
anticyclonic part decays slower than the cyclonic §R&J.  the simulations based on M1 and Ndlid and dashed lines,
2(3)]; thus, the ratiop decreasegFig. 2(c)]. As a conse- respectively. The componentyy is slightly smaller when
quence, the vortex trajectory is deflected towards the stronysing M1 compared with the simulation based on M2, while
ger half, i.e., to the right. In contrast, when using model M2;, , is negative for M1 and is obviously zero for M2. How-
both halves of the dipole decay at the same rate and, thergyer, U is very similar for both cases. The corresponding
fore, the ratiop remains constant. For this reason, obviously,dipole velocities when using models M3 and M4 have been
the trajectory is never deflected. The same occurs when mogkso included in Fig. @) (dashed—dotted and dotted lines
els M3 and M4 are used, but in these cases the peak vorticFhe evolution ofU for models M2, M3, and M4 is well
ties decay at a different raf€igs. 2b) and 2d)]. The slow-  described by the corresponding equations in Table Il in the
est dipole decay occurs when using model M3, whichappendix.

indicates the smallness of lateral viscous effects compared The likeness of the temporal evolution Gfwhen using

with Ekman friction. When using model Mdonly linear  models M1 and M2, suggests that the energy decay in both

Ekman friction), the peak vorticities decay exponentially. models must be similar as well. The kinetic energy is defined
With model M2 the decay is slightly more pronounced duegg

to the combination of lateral viscous effects and linear Ek-
man friction. The equations fap in Table II, derived in the
Appendix for models M2, M3, and M4, are in good agree-
ment with the calculated peak vorticities decay.

1
K=§f f (u?+v?)dxdy, (3.9
and the enstrophy as
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M1, M2 M3, M4
1 1=
R~ @ - __®
0.5 NG 0.5
w(‘h ) =~ w(‘h )
w(()""_) 0 w(()’L’_) 0
-0.5 -7 - -0.5 FIG. 2. Upper row: Time evolution of
P e the dipole peak vorticitiess™ andw ™~
] s ] =TT in simulations 1, 2, 3, and 4, based on
- -1 == models (@) M1 (solid line and M2
0 0.5 1 0 0.5 1 (dashed ling (b) M3 (dashed—dotted
t/TE t/TE line), and M4(dotted ling. For clarity,
simulations 1 and 2 are separated from
3 and 4. Lower row: Time evolution of
(c) (d) the ratiop=w*/|o”|. (c) and(d) as
Q= in the upper row. All values are nor-
malized to unity at=0.
0.8
P P os
0.4
0.2 0.2
0 0
0 0.5 1 0 05 1
t/TE t/TE
1 ) ues ofuy andvy. The simulation based on model MEig.
S= EJ' f wdxdy. (3.9 5(a)] clearly shows dispersion, and a well-defined functional

. ) . . ~ w— ' relationship does not exist. The faster decay of the
Figure 4 shows the evolution of these “global” quantities ¢y cionic part of the dipole is also evident from this figure. In

for the four 2D models. It is evident that with nonlinear .qn«ast the dipole evolution according to the simulation us-
Ekman friction(solid line) the energy decay is even slightly ing model M2 shows an almost perfectly linear ' rela-

slower than with linear Ekman frictiodashed ling Again, tionship [Fig. 5(b)]. This result is further exploited in the

expressions foK andSin Table ”. in the Appendix describe Appendix in the analytical treatment of the dipole evolution

the energy and enstrophy evolutions for models M2, M3, and .
when using model M2as well as models M3 and M4

M4, very accurately.

In order to investigate the evolution of the relationshipB Advection of passive tracers

between vorticity and stream function, Fig. 5 shows the cal-"" P

culated scatter plots &t=0.88T¢ from simulations using Figure 6 shows the transport of passive tracers initially

models M1 and M2. The stream function has been correctedistributed within the dipole in simulations 1 and 2. The

according toy' = ¢y—ugy +vyx by using the calculated val- panels correspond to the same times as in Fig. 1= s a

1 1=—=
(a) N e (b)
Ug o8l N\ Tl
s T FIG. 3. Calculateda) velocity com-
0.5} s o N ponents (4 ,v4) and(b) velocity mag-
Ug, Vg =~ U o8 R 1 nitudeU of the dipole in simulations 1
(cm/s) T (cm/s) N and 2, based on models Mgolid line)
I~ and M2 (dashed ling respectively.
0.4 NE S Panel(b) also shows the velocity mag-
X nitude of the dipole from simulations 3
0.2 and 4, based on M3dashed-dotted
line) and M4 (dotted ling, respec-
tively.
-0.5 0
0 0.5 1 0 0.5 1
t/Tg t/Tg
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1= 1=
— @ ~ (®)
08} X Tl o8l \. T~
K 08 g 06 - -
f N\ S_ N\
04 AN 04 N
\ \\
0.2 TN 0.2 T .
0 0
0 0.5 1 0 0.5 1
t/Tg t/Tg

FIG. 4. Calculateda) energy andb) enstrophy in simulations 1, 2, 3, and 4, based on modelgddlld line), M2 (dashed ling M3 (dashed—dotted line
and M4 (dotted ling, respectively. All values are normalized to unitytatO.

total of 300 tracers were randomly placed within the dipole’sferent Ekman numbers using model M1. For this purpose the
atmosphere, i.e., within a circle of radias= 10 cm. Appar-  vortex evolution is simulated by using three different depths:
ently, besides the deflected trajectory, another fundament®, 16, and 24 cm, corresponding to simulations 6, 1, and 5 in
feature of the dipole evolution using model M1 is the occur-Table |, respectively.
rence of detrainment, i.e., the vortex structure “leaks” fluid Figure 8 shows the calculated trajectories of the dipole
into the ambient: A tail of tracers is left behind by the trans-during a timespan of 180 s. The position of the dipole is
lating dipole. In contrast, when using the conventional bot-defined as in Fig. 1. It is evident that the deflection of the
tom friction formulation, i.e., model M2, there is no visible vortex trajectory occurs at earlier times for the lower depth
advection from the vortex to the ambient fluid. In simula- (8 cm). Also, the vortex is able to drift a longer distance for
tions based on models M3 and M4 the dipole does not leakl=24 cm, which simply indicates that Ekman effects act
fluid either (not shown here more effectively for lower depths. In Fig. 9 the peak vortici-
It must be noticed that, when using model M1, theties of both halves of the dipole are plotted for the three
marked fluid parcels left behind in the wake originate fromsimulations[Fig. ¥a)], together with the rati@ [Fig. 9b)].
the cyclonic part of the dipole. This asymmetry of the de-In all cases the negative half decays slower than the positive
trainment is more clearly shown in Fig. 7, where the passive®ne, but the decay is clearly faster for smaller fluid depths.
tracers in Figs. @—6(c) are plotted separately for the cy-
clonic (left column and the anticyclonic(right column  IV. EXPERIMENTAL DIPOLAR VORTICES
parts, for three stages of the evolution. This detrainment ef- The dipole evolution has been verified qualitatively by
fect, although rather small, reveals a fundamental d|fferenCﬁ1eans of laboratory experiments in a rotating rectanguiar
between models M1 and M2. tank with horizontal dimensions 150 ¢m00 cm. The tank
C. Vortex decay for different depths is rotated_ 1in thg anticlockwise dirgction at a f:onstant rate of
: 0 =0.5 s+, which corresponds with a Coriolis parameter
In this subsection the evolution of the same dipolar=2Q=1 s*. Filled with fresh tap water, the tank is set at
Chaplygin—Lamb vortex previously shown is studied for dif- the specified constant rotation about 30 minutes before the

0.4 w 0.4
(a) : (b)
0.2 ! 0.2 !
! i
w 0 w 0 ‘ FIG. 5. Numerically calculat(_ed scatter
— — plots showing thevw— ¢’ relation rep-
Wo : Wo ! resenting the dipole evolution at
-0.2 . -0.2 ) =0.88T¢. (@) Simulation 1 (model
: . M1) and(b) simulation 2(model M2.
¢ All values are normalized to unity at
-0.4 ' -0.4 t=0.
-02 -01 0 01 02 -02 -01 0 01 02
&[4 ¥/
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Model M1 Model M2
=40 s t=40s
100 100
80 (a) 80 (d)
€ 60 /TN 60 ST
o : ﬁ—% : ‘Q/
> 40f N 40 S
20 20
0 0
0 50 100 150 0 50 100 150
X (cm)
=120 s =120 s
100 100 FIG. 6. Evolution of 300 tracers
80 (b) 80 (e) placed in the initial atmosphere of the
dipole(indicated by the dashed—dotted
60 . 60 . circle) in (a)—(c) simulation 1, and
N N ﬁ (d)—(f) simulation 2. The tracers evo-
40 \.,'7 @ 40 A lution is presented for the same times
as in Fig. 1.
20 20
0 0
0 50 100 150 0 50 100 150
=200 s =200 s
100 100
80 (© 80 ®
60 7T 60 P #
: : 7
40 \T_M‘\EQ s} S
20 20
0 0
0 50 100 150 0 50 100 150

start of an experiment in order to ensure that the fluid habetween the experimental results and the numerical simula-
reached a state of solid body rotation. A dipolar vortex wagions is only qualitative. The close resemblance between
produced by applying the same technique as described Hyoth, however, strongly suggests that the physical effects
Velasco Fuentes and van Hei[sA bottomless thin-walled introduced in model M1 provide a much better description of
cylinder of about 8 cm diameter was slowly moved in the the experimental evolution of the dipole than the conven-
direction, while gradually lifting it. As a result, a columnar tional model M2.
dipole is formed in the wake of the cylinder. The relative Quantitative comparisons have not been made because
translation motion of the cylinder has to be very sltiypi-  the parabolic free surface, always present in the rotating tank
cally less than 5 cm's) in order to ensure a quasi-2D mo- experiments, is not included in model M1. The parabolic
tion. The flow was visualized by adding fluorescent dye toshape of the surfacdalso equivalent to the so-called
the fluid inside the cylinder before starting the experiment;y-effect induces stretching effects on fluid columns due to
the evolving dye distributions were recorded with a co-changes in depth, which eventually affect the dipole
rotating camera mounted at some distance above the rotatimgotion>® As the vortex moves towards the center of the
tank. tank, the anticyclonic part decays slower due to squeezing of
Figure 10 shows the evolution of a typical dipole for the fluid columns and, as a result, a deflection to the right in the
case of a mean fluid depth of 16 cm. A qualitative compari-vortex trajectory is also produced. The combined effect of
son can be made with Figs(é#—6(c). Clearly, the vortex Ekman friction plus topographic variations on barotropic
trajectory is also deflected to the right. More remarkable, thélow is beyond the scope of the present study. This problem
elongated shape of the cyclonic part of the dipole, togetheis examined separately in a different stu@y progress in
with the leaking of fluid to the ambient, are evident for which the physical model M1 is further extended in order to
=160-200 s. Before these times, the visible tail of the di-include variable topography.
pole appears as an unavoidable consequence of the experi- The influence of the free surface is enhanced for lower
mental method. It has to be stressed that the comparisatepths because the relative change in depth in such cases is
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FIG. 9. (a) Time evolution of the di-
pole peak vorticitieso™ and ™~ in

simulations 6, 1, and §b) Time evo-
lution of the ratiop=w*/|w~|. Lines
as in Fig. 8.

FIG. 10. Top view photographs show-
ing the evolution of an experimental
dipole during a timespan of 200 s
(0.88Tg). The experimental param-
eters approximately correspond to
those in numerical simulation 1.
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greater. This was verified by observing the evolution of di-when the nonlinear term is included the decay is larger for
polar vortices in experiments where the mean depth was &>0 than fore<0. This can be shown from the solution of
cm (not shown herg In these cases, the dipole deviation to (5.1),

the right was more pronounced than in the numerically cal-

culated trajectory shown in Fig. 8. For a mean depth of 16 _ woexp(—t/Tg)

cm, however, free-surface curvature effects are smaller than (wo/f)[1—exp —t/Te)]+1’

the bottom friction effects, and the deflected dipole trajectory . N o
observed in simulation 1Figs. 1a)—1(c)] agrees with that wherewy is the initial vorticity distribution. The faster decay

. K I of cyclonic fluid columns has been pointed out in previous
observed in the laboratory experiment shown in Fig. 10. studies by several author&1718

The advection of fluid from the cyclonic part of the di-
V. SUMMARY AND DISCUSSION pole to the ambient is related with the asymmetrical evolu-
tion of the vortex. Fluid from the positive part is eventually

bottom in a rotating system has been studied numerically(.j(.atraimEd fro”? the dipole, due to its faster decay compared
The results are qualitatively verified by means of Iaborator))N.'th the neganve par_t. An analo_gou_s phenomer_won oceurs for
experiments in a rotating tank. Dipolar vortices are self-dIIOOIar vortices moving across '52“”95 of a’_“b'e”t VOI"FICIty,
propelled by the mutual interaction between their counter®® ShOV.V” by Vglasco Fuentesal,” who studied advection
rotating parts, until they collide with a boundary or until they propertles of dipoles on a topographftplane. Note frgm
have decayed by viscous effects. Our aim in the paper haF|g. 7 that there has also been some exchange of fluid from

been to examine the dipole decay during a relatively Iong{%e cyclonic part to the anticyclonic one. Since the scope of

timespar O(Tg)] in order to appreciate the effect of bottom his ;tudy has b een to show the Iea!< g effect associated to
friction. For this purpose, the numerical simulations arenonlmear Ekman friction, the quantitative measurement of
based on a 2D physical m’odel derived in ZS@godel M1 the advection properties is left for a more detailed study.

Eqg. (2.1)]. This model retains the nonlinear terms associated The_ main results reported in this paper were verified
with the linear Ekman condition at the solid bottom, in theguahtatlvely by means of laboratory experiments in a rotat-

vorticity equation. Such a model is an extension of the con!n9 tank. The deflection of the vortex trajectory, the defor-

ventional 2D formulation, which includes Ekman effects mation of the cyclonic half, and the detrainment of dipole
only by a linear stretching, terfmodel M2, Eq.(2.6)] fluid to the ambient as seen in the numerical simulations are
For the purely inviscid case, dipoles drift in a straight also clearly observed in the laboratory experimeee Fig.

line maintaining the symmetry between both hal¥&hen 10). ﬁt'quantltatlg/e CtOtr)nparlsdon bbetween fe>t<rﬁ)er|rfr;en;[s fatr;]d
only lateral viscosity is includefinodel M3, Eq.(2.7)], the simufations could not be made because of the efiect ot the

dipole still moves along a straight trajectory while now parabolic free surface under experimental conditions, which

gradually decaying and radially expandihg With linear is not accounted for in the numerical simulations. This effect
Ekman effects but without lateral viscositsnodel M4, Eq. (the so-calledy-effec), although weak, is expected to have

(2.8)], the dipole maintains the straight trajectory while ex- an influence on the dipole trajectory.

ponentially decaying. When both lateral viscous effects and

linear Ekman friction are include@nodel M2 the symmetry ACKNOWLEDGMENTS

is still conserved, i.e., both halves decay at the same rate,and | 7 g gratefully acknowledges financial support from

the dipole still moves along a rectilinear path; the decay ratgy,q Consejo Nacional de Ciencia y TecnolbeZONACYT
is now of course larger than in models M3 and M4. Theyayico) and from the Eindhoven University of Technology

differences when using nonlinear Ekman damping, the eXiryg) critical comments and reading of the manuscript by
tended model M1, are remarkable. The main results are thg, rice Satijn are sincerely appreciated.

following: (1) the dipole trajectory is deflected towards the

right (i.e., in an anticyclonic sensand,(2) during the decay

process, the cyclonic half is elongated and leaks fluid to th&PPENDIX: DIPOLE EVOLUTION IN MODEL M2

ambient, leaving a tail behind the dipole. In this appendix the evolution of the Chaplygin—Lamb
The dipole trajectory is deflected because the decay ratgipole using model M2 is analytically described. The dipole

of the anticyclonic part is smaller than that of the cyclonicdecay when using models M3 and M4 has been reported

one. This effect is due to the nonlinear Ekman terms inpefore by Nielsen and Juul Rasmussemd Swaters and

model M1, in particular the nonlinear Ekman stretchingFlierl,® respectively. Since model M2 is just a combination of

term. This can be shown by considering model M1, @ql)  the viscous effects in M3 and M4, the same method of

(5.2

The evolution of quasi-2D dipolar vortices over a flat

with only Ekman stretching terms, Nielsen and Juul Rasmussen is followed here. Considering
Jw 1 the smallness of viscous effects the dipole is assumed to
i EEl’Za)(wvL f). (5.1)  keep its functional form while decaying. That is, the inviscid

dipole solution(3.2) is still considered valid, with the atmo-
When only the linear part is considered the vorticity decayssphere radius and the speed slowly varying in time. This
exponentially as in model Mfisee the corresponding equa- assumption is reinforced by observing that the scatter plot for
tion for w in Table Il in the Appendix Obviously, the vor- model M2 [Fig. 5b)] presents a closely linear relationship
ticity decay does not depend on the signaaf In contrast, betweenw and ¢'. The productak is also assumed to be
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constant(equal to 3.8317, being the first zero of the Bessel

Zavala Sanson, van Heijst, and Backx

: e S . : dK 4
function J;), which simply implies thak is a function of i —2mry?U?— —a?u?, (A7)
time as well. Note from Fig. &) that these basic assump- E
tions are clearly not valid for model M1. Obviously, the ds U2 2
results obtained here for model M2 can be applied for model ~“=_ _ 2mvyt—— —— 4202, (A8)
M3 (by neglecting Ekman effegtand for M4(by neglecting dt a2 Tg

lateral viscosity. Table Il summarizes the evolution equa-
tions for the three models.
When considering model M2, the temporal evolution of

Combining (A6) with (A8), and afterwardgA5) with (A7)
yields the evolution equations faf anda?,

the kinetic energK and enstrophys is given by du vy? 1
=t —|u (A9)
dK 2 dt a2 Te
d—=—2vS——K, (A1)
t Te d(a?)
ds 2 dt
_:_va f (Vw)?dxdy— —S. (A2)
dt Te After time integration,
The terms proportional to represent lateral viscosity and a(t)=(vy’t+ad)? (A11)
those proportional tol ¢ ! represent linear Ekman friction.
The enstrophy decay is obtained by multiplying E}.6) aﬁ t
with » and integrating over the horizontal domain. Similarly, ~ U(t)=Uq Stral exp — | (A12)
0 E

the energy decay comes from multiplying the 2D momentum

equations with the velocity vectdrthe term associated with where the subindex 0 denotes the valué=a0. Since it has
Ekman friction, however, was chosen analogous to the sekeen assumed that=k?y’, the vorticity evolution is given
ond term in the enstrophy decay. These expressions are valfsy
for any flow vanishing at the boundaries. The energy and

in— i 1% 1
enstrophy of the Chaplygin—Lamb dipole are a_‘t" - _( 2+ — | o (A13)
K=2ma’U?, (A3) Te
S=m2U2 (A4) usingk?(t) = y?/a?(t) the solution is
where y=ak is considered constaii8.831%. AssumingU _ : t AL
=U(t) anda=a(t) the time evolution oK andSis @(X.y.t)=wo(X,Y) 2t + 8l exp — _E : (A4)

dK_4 U du Uda A5
a— mTa aa-l- a , ( )
dS—z 2uGIU A6
gt 2™ Vg (AB)

On the other hand, usin@3) and(A4) in Egs.(Al) and
(A2) [together with the dipole solutiot3.2) in order to
evaluate the integral i0A2)], it is verified that

TABLE II. Approximate solutions of the local and global properties during
the dipole evolution using models M2, M3, and M4.

M2 M3 M4
a(t) (vy’t+ag)"? (vy’t+ad)?? ag
a\’ t o)’ t
u(t) uo(—) exp(—) U0<—0) Uo exp(—
a Te a Te
® —| exp—— — exg — —
@0 a Te “o a “o Te
2 2
2t 2t
K(t) Ko(a—o) e p(— —) Ko @) Ko ex;{— —
a Te a Te
4 4
g 2t ay 2t
— | exp —— —_ exp — —
S(t) S)( a) F( Te SO( a ) N F{ TE)

The corresponding expressions for the global quantities
andS[using(A3) and (A4)] are

. ol @ 2t
K(t)=2magUg > slexp ——|, (A15)
vyt+ag Te
S(t) 2y2 2 exp( 2t ) (A16)
=17 B — - .
770 (y2tr ad)? Te

Equations(Al1l), (A12), and(A14)—(A16) describe the
temporal dipole evolution according to model M2. The cor-
responding analytical expressions for models M3 and M4 are
easily obtained by settingg—~ (model M3 or »=0 and
Te fixed (model M4, as shown in Table Il. In order to fa-
cilitate the comparison the evolution equations are rewritten
by usingK,=2ma3U3 and Sy=7y?U3, the initial energy
and enstrophy values of the Chaplygin—Lamb dipole. Note
that the dipole’s atmosphere is unchanged when model M4 is
considered. Thus, obviously, the evolution aft) is the
same in models M2 and M3.

Figure 11 shows the temporal evolution®f U, K, and
S calculated from simulations based on M2, M3, and M4,
already presented in Sec. Il A, but now compared with the
analytical expressions in Table Il. Note that the energy and
enstrophy(which can be called “global” properties, since
they involve spatial integrations over the whole domain
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