This paper deals with the motion of a single helical vortex in an unbounded, inviscid, incompressible fluid. The vortex is an infinite tube whose centerline is a helix and whose cross section is a small circle where the vorticity is uniform and parallel to the centerline. Ever since Joukowsky (1912) deduced that this vortex translates and rotates steadily without change of form, numerous attempts have been made to compute these velocities. Here Hardin’s (1982) solution for the velocity field is used to find new expressions for the vortex’s linear and angular velocities. The theoretical results are verified by numerically computing the velocity at a single point using the Helmholtz integral and the Rosenhead-Moore approximation to the Biot-Savart law, and by numerically simulating the vortex evolution, under the Euler equations, in a triple-periodic cube. The new formulas are also shown to be more accurate than previous results over the whole range of values of the vortex pitch and cross-section.

Key words: vortex dynamics, vortex flows

1. Introduction

The realization that concentrated helical vortices are frequent features in natural and man-made flows has grown steadily since Parsons (1901) discovered that “a small spiral vortex existed just behind the tips of the propeller blades” used to generate the thrust needed to move a vessel. The theoretical study of helical vortices has an even longer history. Here we highlight the earliest results, but see Ricca (1994) for a detailed review of classical studies of the motion of a single helical vortex in an inviscid, unbounded fluid (figure 1). Kelvin (1880) found that one mode of vibration of a cylindrical vortex of uniform vorticity is a wave that deforms the vortex axis into a helix of small radius and large pitch, and that this wave propagates along the axis with constant speed. Fitzgerald (1899) assumed that this result was valid for helices of any pitch and radius and speculated about the flow induced by the vortex: “there will be, on the whole, a flow along the inside of the spiral, but the motion of the fluid is complex.” Joukowsky (1912) showed that a helical vortex translates and rotates steadily without change of form and found that its velocity is approximately equal to the velocity of an osculating vortex ring; he further stated that any number of equal helical vortices symmetrically arranged with respect to a common axis form a steadily moving arrangement.

In the last two decades there has been a renewed interest in helical vortices (Ricca 1994; Mezić et al. 1998; Kuibin & Okulov 1998; Boersma & Wood 1999; Wood & Boersma 2001; Okulov 2004). Most of these works have concentrated on the binormal component of
Figure 1. A segment of a thin helical vortex. The vortex extends indefinitely in both directions and its centerline is a helix of pitch L and radius R lying on the surface of an imaginary supporting cylinder.

The vortex velocity and have implicitly or explicitly dismissed the tangential component (see figure 2). This component certainly contributes nothing to the time evolution of the Eulerian velocity and vorticity fields but a vortex is essentially a Lagrangian object (see, e.g., Lugo 1979; Haller 2005), therefore the correct evaluation of the vortex motion requires the total velocity of the material particles that constitute the vortex. Furthermore there are practical situations where the tangential velocity is important (Greenwell 2003). Removing this component leads to an error that may be small when the vortex has large pitch but becomes significant when the vortex has small pitch, for then the tangential component is about one third of the binormal one.

The objective of this paper is to obtain expressions for the vortex’s linear and angular velocities (U and Ω, respectively) that are accurate over the whole range of pitch values for vortices of small cross section (when compared to the radius of curvature of their centerline). Our methodology draws on the achievements of previous students of this subject:

(a) We compute the total velocity in terms of its axial and azimuthal components (Levy & Forsdyke 1928; Widnall 1972) and only later express it in terms of the binormal and tangential components in order to compare with previous analytic results (Boersma & Wood 1999; Greenwell 2003).

(b) As most authors have done before (Joukowsky 1912; Da Rios 1916; Levy & Forsdyke 1928; Widnall 1972; Ricca 1994), we assume vortices of circular cross section and uniform vorticity. These are mere approximations: in a steady solution of the Euler equations the vorticity varies linearly with the distance to the center of curvature and the cross-section slightly differs from a circle. But they are good approximations when the radius of the cross section is much smaller than the radius of curvature.

(c) We compute the vortex velocity by averaging the velocity field at two diametrically-opposed points on the surface of the vortex (Ricca 1994; Boersma & Wood 1999; Okulov 2004).
Motion of a helical vortex

2. Theoretical results

A helical vortex is a thin tube of infinite length whose centerline is a helix of uniform pitch lying on the surface of an imaginary supporting cylinder (see figure 1). The centerline of the vortex is given, in Cartesian coordinates, as follows:

\[x = R \cos \theta, \]
\[y = R \sin \theta, \]
\[z = \frac{L\theta}{2\pi}, \]

where \(\theta \) is the angle around the cylinder’s axis, \(R \) is the radius of the helix and \(L \) is the pitch of the helix.

On the vortex’s circular cross-section the vorticity is uniform in magnitude and direction, which is parallel to the centerline’s tangent. The vortex thus has circulation \(\Gamma = \pi a^2 \omega \), where \(a \) is the radius of the cross-section and \(\omega \) is the magnitude of the vorticity. The four parameters that uniquely define the vortex are then \(\Gamma, R, L \) and \(a \) but, since the value of \(\Gamma \) merely changes the time scale of the evolution, we are left with two dimensionless parameters: the vortex radius \(\alpha = a/R \) and the vortex pitch \(\tau = L/2\pi R \).

Because of the geometry of the problem the vortex velocity can be expressed in either cylindrical components, \(u_\theta, u_z \), pointing in the azimuthal and axial directions, respectively; or in natural components, \(u_t, u_b \), pointing in the tangent and binormal directions, respectively (see figure 2). We will use cylindrical coordinates because the translation speed of the vortex, \(U \), equals the axial component of the velocity, \(u_z \), whereas the angular velocity of the vortex, \(\Omega \), equals the azimuthal component divided by the helix radius, \(u_\theta/R \).

The velocity field produced by an infinitely-thin helical vortex was obtained by Hardin...
(1982), although some of his results were anticipated by Kawada (see Fukumoto et al. 2015). Hardin’s solution, expressed in cylindrical coordinates, is divided in an interior field (valid inside the supporting cylinder) and an exterior field (valid outside the supporting cylinder). Here we reproduce only the azimuthal and axial components needed for the calculation of the vortex motion:

\[u_\theta(r, \phi) = \begin{cases} \frac{\Gamma R}{\pi rl} S_1(r, \phi) & \text{if } r < R \\ \frac{\Gamma}{2\pi r} + \frac{\Gamma R}{\pi rl} S_2(r, \phi) & \text{if } r > R \end{cases} \] (2.4)

\[u_z(r, \phi) = \begin{cases} \frac{\Gamma}{2\pi l} - \frac{\Gamma R}{\pi l^2} S_1(r, \phi) & \text{if } r < R \\ -\frac{\Gamma R}{\pi l^2} S_2(r, \phi) & \text{if } r > R \end{cases} \] (2.5)

where \(\phi = \theta - z/l \), \(l = L/2\pi \) and

\[S_1(r, \phi) = \sum_{m=1}^{\infty} mK'_m \left(\frac{mR}{l} \right) I_m \left(\frac{mr}{l} \right) \cos m\phi \] (2.6)

\[S_2(r, \phi) = \sum_{m=1}^{\infty} mK_m \left(\frac{mR}{l} \right) I'_m \left(\frac{mr}{l} \right) \cos m\phi \] (2.7)

are Kapteyn-like series involving the modified Bessel functions \(K_m \) and \(I_m \), and their corresponding derivatives \(K'_m \) and \(I'_m \).

Since we are dealing with vortices of finite cross section, it is possible to compute the velocity of the vortex by evaluating the velocity field at two diametrically-opposed points on the surface of the tubular vortex. The uniformity of the vorticity on the cross section guarantees that the average of these velocities is the actual velocity of the fluid particles lying on the centerline, i.e. the velocity of the vortex. This approach has been previously used by Ricca (1994), Boersma & Wood (1999) and Okulov (2004) for the computation of the binormal component; here we will use it for the computation of the axial and azimuthal components. For simplicity, we choose to evaluate the velocity at points \((r, \theta, z) = (R \pm a, 0, 0)\) or, in helical coordinates, \((r, \phi) = (R \pm a, 0)\). Therefore, the motion of the vortex is given by

\[U = \frac{1}{2} \left[u_z(R - a, 0) + u_z(R + a, 0) \right] \] (2.8)

\[\Omega = \frac{1}{2R} \left[u_\theta(R - a, 0) + u_\theta(R + a, 0) \right] \] (2.9)

A technical issue with this method is that the series \(S_1 \) and \(S_2 \) converge slowly, particularly when approaching the vortex itself, which hinders the computation of \(U \) and \(\Omega \). This problem was solved by Boersma & Wood (1999), who eliminated the singularities from \(S_1 \) and \(S_2 \) for the two particular points needed in the computation of the motion:

\[S_1(R - a, 0) = \frac{1}{4} \frac{\tau^2}{(1 + \tau^2)^{3/2}} \left(-\frac{2}{\epsilon} + \ln(\epsilon) + \ln \left(\frac{\sqrt{1 + \tau^2}}{2} \right) \right) + \frac{\tau}{2} - \frac{\tau^2}{4} W(\tau) \] (2.10)

\[S_2(R + a, 0) = \frac{1}{4} \frac{\tau^2}{(1 + \tau^2)^{3/2}} \left(\frac{2}{\epsilon} + \ln(\epsilon) + \ln \left(\frac{\sqrt{1 + \tau^2}}{2} \right) \right) - \frac{\tau^2}{4} W(\tau) \] (2.11)

where terms that tend to 0 when \(\epsilon \to 0 \) have been omitted (\(\epsilon = a/R_c \), with the radius of
Motion of a helical vortex

Figure 3. The non-dimensional linear and angular velocities of a helical vortex (U^* and Ω^*, respectively) as functions of its pitch and radius (τ and α, respectively). Thicker contours indicate higher absolute values of U^* or Ω^*; the gray area indicates the region of the parameter space where Ω is negative (clockwise rotation of the helix). The smallest value of U^* represented by a contour is 1 and the contour interval is 1.25; the smallest value of Ω^* represented by a contour is -5.2 and the contour interval is 0.4.

The expression for Ω^* may be simplified using the assumption $\alpha^2 \ll 1$.

$$\Omega^* \approx -\frac{\tau}{(1 + \tau^2)^{3/2}} \left(\ln(2/\epsilon) - \ln(\sqrt{1 + \tau^2}) + (1 + \tau^2)^{3/2}(W(\tau) - 2/\tau) + 2(1 + \tau^2) \right)$$

(2.15)

The dimensional vortex velocities are obtained by multiplying U^* by $\Gamma/4\pi R$ and Ω^* by $\Gamma/4\pi R^2$. Figure 3 shows U^* and Ω^* (computed using equation 2.6) in the region $10^{-6} < \alpha < 0.4$ and $0.1 < \tau < 10$. Helical vortices always translate in the direction of the axial component of the vorticity, they do so with a velocity that increases as their pitch τ and radius α decrease.

Helical vortices generally rotate opposite to the azimuthal component of the vorticity,
i.e. clockwise when seen from the direction in which the vortices translate. This occurs because the vortices’ centerline is a right-handed helix and the binormal velocity is generally much larger than the tangential one (see figure 2). For a fixed radius α, helical vortices rotate with an angular velocity that has a maximum absolute value when their pitch τ is about one; for a fixed pitch τ, the angular velocity increases in magnitude as the vortices’ radius α decreases. The positive values of Ω^* in the upper left corner of figure 3 are explained as follows: $u_\theta \rightarrow 0$ as $\tau \rightarrow 0$ whereas u_t grows with α. Therefore, relatively thick vortices of small pitch rotate in anti-clockwise sense.

Note that the translation speed U^* behaves as the helix’s curvature, $1/R(1 + \tau^2)$, which has a maximum value $(1/R)$ when $\tau = 0$ and then decreases to zero as τ goes to infinity. Similarly, the magnitude of the rotation speed Ω^* behaves as the helix’s torsion, $\tau/R(1 + \tau^2)$, which grows from zero when $\tau = 0$ to its maximum value $(1/2R)$ when $\tau = 1$ and then decreases to zero as τ goes to infinity.

The natural components of the vortex velocity are related to the cylindrical components by the following expressions:

$$U_b = \frac{U - \tau R \Omega}{\sqrt{1 + \tau^2}} \quad U_t = \frac{\tau U + R \Omega}{\sqrt{1 + \tau^2}} \quad (2.16)$$

Using here the values of U and Ω given by (2.13) and (2.15) we obtain the binormal and tangential components of the vortex velocity:

$$U_b^* = \frac{1}{1 + \tau^2} \left(\ln(2/\epsilon) - \ln(\sqrt{1 + \tau^2}) + (1 + \tau^2)^{3/2} W(\tau) - 2\tau \sqrt{1 + \tau^2 + 2\tau^2} \right) \quad (2.17)$$

$$U_t^* = \frac{2 (\sqrt{1 + \tau^2} - \tau)}{1 + \tau^2} \quad (2.18)$$

These must be multiplied by $\Gamma/4\pi R$ to obtain the dimensional velocities. If we write the binormal velocity in the form

$$U_b = \frac{\Gamma}{4\pi R} \frac{1}{1 + \tau^2} \left(\log \left(\frac{1}{\epsilon} \right) + C \right) \quad (2.19)$$

we find that C, the so-called remainder, coincides with the result of Boersma & Wood (1999). Similarly, $U_t^*/2$ gives the result obtained by Greenwell (2003) for the tangential velocity at the initial point of a semi-infinite helical vortex.

3. Comparison with numerical results

We verified equations (2.13) and (2.14) by computing the velocity of the vortex by numerical integration of the Helmholtz formula:

$$u(x) = -\frac{1}{4\pi} \int \frac{[x - x'] \times \omega}{|x - x'|^3} \, dV, \quad (3.1)$$

and the Rosenhead-Moore approximation to the Biot-Savart law (e.g. Saffman 1995):

$$u(x) = -\frac{\Gamma}{4\pi} \int \frac{|x - r(s)| \times dr}{(|x - r(s)|^2 + \mu a^2)^{3/2}}, \quad (3.2)$$

where a is the radius of the cross section of the tubular vortex and μ is a parameter that depends on the vortex local structure, i.e. its vorticity distribution, curvature and torsion. By our definition a helical vortex has everywhere the same local structure, therefore μ is a constant whose value must be determined. This is usually done by choosing μ so that the integral (3.2) produces results in agreement with a known solution obtained with a
Theoretical results
Helmholtz
Biot–Savart
ViC 3D

Figure 4. Linear and angular velocities, U^* and Ω^*, respectively, as functions of the vortex pitch (τ), for a given vortex radius ($\alpha = 0.1$).
the assumptions on which the analytical calculations are based; namely, that throughout the evolution of the vortex its centerline remains a helix, its cross section a circle and its vorticity uniform and parallel to the centerline. These three assumptions showed to be right to a very good approximation.

4. Comparison with previous results

Joukowsky (1912) and Da Rios (1916) found that, to the order of approximation they used, the velocity is entirely in the binormal direction. They found the binormal velocity, U_b, to be given by

$$U_b = \begin{cases} \frac{\Gamma}{4\pi R_c} \log \left(\frac{2R_c}{a} \right) & \text{(Joukowsky 1912)} \\ \frac{\Gamma}{4\pi R_c} \log \left(\frac{R}{a} \right) & \text{(Da Rios, 1916)} \end{cases}$$

where $R_c = R(1 + \tau^2)$ is the radius of curvature. Note that these formulas are variations of the localized induction approximation first enunciated by Schwedoff (1887) and later mathematically formalized by Da Rios (1906). We decomposed these velocities in cylindrical components in order to compute U^* and Ω^* (see the thin blue lines in figure 5); they are in reasonably good agreement with (2.13)–(2.14), shown in red thick lines, for $\tau > 2$ only.

Levy & Forsdyke (1928) and Widnall (1972) computed the linear velocity U and the angular velocity Ω of helical vortices of small pitch (in the ranges $0.25 < \tau < 1.25$ and $0.1 < \tau < 1$, respectively). Levy & Forsdyke (1928) avoided the singularity in the Biot-Savart law by evaluating part of the integral near, instead of on, the filament; Widnall (1972) obtained the vortex velocity using the cut-off method and matched asymptotic expansions. In the range $0.3 < \tau < 1$ the results of Widnall (1972) and Levy & Forsdyke (1928), shown in dashed and dash-dotted lines in figure 5, are in better agreement with equations (2.13)–(2.14) than any earlier or later result.

Ricca (1994), Boersma & Wood (1999) and Mezić et al. (1998) argued that the
tangential velocity is unimportant and computed the binormal velocity \((U_b)\) only. Mezić et al. (1998) decomposed \(U_b\) to obtain \(U^*\) and \(\Omega^*\): the former shows reasonable agreement with (2.13) for all values of the vortex pitch, the latter shows good agreement with (2.14) for \(\tau > 1\) only. Note that while \(U_b\) is enough to determine the time evolution of the Eulerian velocity and vorticity fields, neglecting the tangential velocity \((U_t)\) leads to error when studying particle motion in the vicinity of the vortex; see, e.g., this video: https://youtu.be/FmrqtHK7wVM (Velasco Fuentes 2015). Even more seriously, as the same video shows, neglecting \(U_t\) leads to slippage of irrotational fluid in contact with vortical fluid, i.e. to the appearance of a vortex sheet at the vortex boundary.

Finally, the results of Okulov (2004) for the binormal component are in good agreement with ours, but his results for \(U^*\) and \(\Omega^*\), shown in green lines in figure 5, differ greatly from ours as a consequence of the use of inconsistent assumptions, as explained below. In what follows the prefixes “O” and “R” indicate equations in Okulov (2004) and Ricca (1994), respectively. Equation O4.4, which gives \(\Omega\) as a function of \(\tau\) and \(U_b\), was obtained using O2.4 and transformation relations between cylindrical and natural components (see, e.g., R4.1). Then \(U_b\) was computed under the assumption that the vorticity is uniform on the vortex cross section (see O4.6 and R4.12). A conflict exists because O2.4 implies O2.9, which means that the vorticity is parallel to helical lines of constant dimensional pitch \((l = L/2\pi)\). Such a vorticity field cannot be uniform on the vortex cross section; thus O4.4 gives an incorrect value of \(\Omega\). The same conflicting assumptions are used by Okulov & Sørensen (2007, 2010).

5. Conclusions

We have found new expressions for the linear and angular velocities of helical vortices that have, to leading order, uniform vorticity and circular cross-section. These expressions are valid for vortices of any pitch when their cross-sectional radius is much smaller than the helix radius \((\alpha^2 \ll 1)\).

Numerical computations of the linear and angular velocities of a helical vortex using the exact Helmholtz formula, the approximated Rosenhead-Moore integral and a triple-periodic vortex-in-cell model show that our theoretical results are correct (within the limits of our assumptions) over the whole range of the vortex parameters. Previous analytical formulas generally give good approximations for vortices of large pitch only (say \(\tau > 5\)); the most notable exception being Widnall (1972), whose results agree very well with our theoretical formulas and numerical calculations in the range \(0.3 < \tau < 1\).

I gratefully acknowledge Professor David H. Wood for bringing to my attention the early work of Sandi Kawada on the velocity field of a helical vortex, and the anonymous referees for their comments and criticisms on previous versions of the paper. This research was supported by CONACyT (México) under grant number 169574.

REFERENCES

Fukumoto, Y., Okulov, V. L. & Wood, D.H. 2015 The contribution of Kawada to the

VELASCO FUENTES, O. 2015 Helical vortex in a moving frame. Youtube: https://youtu.be/FmrqtHK7wVM.
